IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v436y2005i7053d10.1038_nature03872.html
   My bibliography  Save this article

Endonucleolytic processing of covalent protein-linked DNA double-strand breaks

Author

Listed:
  • Matthew J. Neale

    (Memorial Sloan-Kettering Cancer Center)

  • Jing Pan

    (Memorial Sloan-Kettering Cancer Center)

  • Scott Keeney

    (Memorial Sloan-Kettering Cancer Center
    Weill Graduate School of Medical Sciences of Cornell University)

Abstract

DNA double-strand breaks (DSBs) with protein covalently attached to 5′ strand termini are formed by Spo11 to initiate meiotic recombination1,2. The Spo11 protein must be removed for the DSB to be repaired, but the mechanism for removal is unclear3. Here we show that meiotic DSBs in budding yeast are processed by endonucleolytic cleavage that releases Spo11 attached to an oligonucleotide with a free 3′-OH. Two discrete Spo11–oligonucleotide complexes were found in equal amounts, differing with respect to the length of the bound DNA. We propose that these forms arise from different spacings of strand cleavages flanking the DSB, with every DSB processed asymmetrically. Thus, the ends of a single DSB may be biochemically distinct at or before the initial processing step—much earlier than previously thought. SPO11–oligonucleotide complexes were identified in extracts of mouse testis, indicating that this mechanism is evolutionarily conserved. Oligonucleotide–topoisomerase II complexes were also present in extracts of vegetative yeast, although not subject to the same genetic control as for generating Spo11–oligonucleotide complexes. Our findings suggest a general mechanism for repair of protein-linked DSBs.

Suggested Citation

  • Matthew J. Neale & Jing Pan & Scott Keeney, 2005. "Endonucleolytic processing of covalent protein-linked DNA double-strand breaks," Nature, Nature, vol. 436(7053), pages 1053-1057, August.
  • Handle: RePEc:nat:nature:v:436:y:2005:i:7053:d:10.1038_nature03872
    DOI: 10.1038/nature03872
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03872
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomoki Tamai & Giordano Reginato & Ryusei Ojiri & Issei Morita & Alexandra Avrutis & Petr Cejka & Miki Shinohara & Katsunori Sugimoto, 2024. "Sae2 controls Mre11 endo- and exonuclease activities by different mechanisms," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Jo-Ching Peng & Hao-Yen Chang & Yuting Liang Sun & Mara Prentiss & Hung-Wen Li & Peter Chi, 2024. "Hop2-Mnd1 functions as a DNA sequence fidelity switch in Dmc1-mediated DNA recombination," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    4. Ihsan Dereli & Vladyslav Telychko & Frantzeskos Papanikos & Kavya Raveendran & Jiaqi Xu & Michiel Boekhout & Marcello Stanzione & Benjamin Neuditschko & Naga Sailaja Imjeti & Elizaveta Selezneva & Has, 2024. "Seeding the meiotic DNA break machinery and initiating recombination on chromosome axes," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:436:y:2005:i:7053:d:10.1038_nature03872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.