IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v436y2005i7051d10.1038_nature03896.html
   My bibliography  Save this article

A possible unifying principle for mechanosensation

Author

Listed:
  • Ching Kung

    (University of Wisconsin)

Abstract

Of Aristotle's five senses, we know that sight, smell and much of taste are initiated by ligands binding to G-protein-coupled receptors; however, the mechanical sensations of touch and hearing remain without a clear understanding of their molecular basis. Recently, the relevant force-transducing molecules—the mechanosensitive ion channels—have been identified. Such channel proteins purified from bacteria sense forces from the lipid bilayer in the absence of other proteins. Recent evidence has shown that lipids are also intimately involved in opening and closing the mechanosensitive channels of fungal, plant and animal species.

Suggested Citation

  • Ching Kung, 2005. "A possible unifying principle for mechanosensation," Nature, Nature, vol. 436(7051), pages 647-654, August.
  • Handle: RePEc:nat:nature:v:436:y:2005:i:7051:d:10.1038_nature03896
    DOI: 10.1038/nature03896
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03896
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Pozza & François Giraud & Quentin Cece & Marina Casiraghi & Elodie Point & Marjorie Damian & Christel Le Bon & Karine Moncoq & Jean-Louis Banères & Ewen Lescop & Laurent J. Catoire, 2022. "Exploration of the dynamic interplay between lipids and membrane proteins by hydrostatic pressure," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Yuqi Qin & Daqi Yu & Dan Wu & Jiangqing Dong & William Thomas Li & Chang Ye & Kai Chit Cheung & Yingyi Zhang & Yun Xu & YongQiang Wang & Yun Stone Shi & Shangyu Dang, 2023. "Cryo-EM structure of TMEM63C suggests it functions as a monomer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Ahmed Al-Ansi & Abdullah M. Al-Ansi & Ammar Muthanna & Ibrahim A. Elgendy & Andrey Koucheryavy, 2021. "Survey on Intelligence Edge Computing in 6G: Characteristics, Challenges, Potential Use Cases, and Market Drivers," Future Internet, MDPI, vol. 13(5), pages 1-23, April.
    4. Jonathan Mount & Grigory Maksaev & Brock T. Summers & James A. J. Fitzpatrick & Peng Yuan, 2022. "Structural basis for mechanotransduction in a potassium-dependent mechanosensitive ion channel," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Ben Sorum & Trevor Docter & Vincent Panico & Robert A. Rietmeijer & Stephen G. Brohawn, 2024. "Tension activation of mechanosensitive two-pore domain K+ channels TRAAK, TREK-1, and TREK-2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Mees Muller & Kier Heeck & Coen P H Elemans, 2016. "Semicircular Canals Circumvent Brownian Motion Overload of Mechanoreceptor Hair Cells," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-15, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:436:y:2005:i:7051:d:10.1038_nature03896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.