IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v436y2005i7049d10.1038_nature03860.html
   My bibliography  Save this article

Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins

Author

Listed:
  • Olaf Scheel

    (Universität Hamburg)

  • Anselm A. Zdebik

    (Universität Hamburg)

  • Stéphane Lourdel

    (Universität Hamburg)

  • Thomas J. Jentsch

    (Universität Hamburg)

Abstract

Eukaryotic members of the CLC gene family function as plasma membrane chloride channels, or may provide neutralizing anion currents for V-type H+-ATPases that acidify compartments of the endosomal/lysosomal pathway1. Loss-of-function mutations in the endosomal protein ClC-5 impair renal endocytosis2 and lead to kidney stones3, whereas loss of function of the endosomal/lysosomal protein ClC-7 entails osteopetrosis4 and lysosomal storage disease5. Vesicular CLCs have been thought to be Cl- channels, in particular because ClC-4 and ClC-5 mediate plasma membrane Cl- currents upon heterologous expression6,7. Here we show that these two mainly endosomal CLC proteins instead function as electrogenic Cl-/H+ exchangers (also called antiporters), resembling the transport activity of the bacterial protein ClC-e1 (ref. 8), the crystal structure of which has already been determined9. Neutralization of a critical glutamate residue not only abolished the steep voltage-dependence of transport7, but also eliminated the coupling of anion flux to proton counter-transport. ClC-4 and ClC-5 may still compensate the charge accumulation by endosomal proton pumps, but are expected to couple directly vesicular pH gradients to Cl- gradients.

Suggested Citation

  • Olaf Scheel & Anselm A. Zdebik & Stéphane Lourdel & Thomas J. Jentsch, 2005. "Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins," Nature, Nature, vol. 436(7049), pages 424-427, July.
  • Handle: RePEc:nat:nature:v:436:y:2005:i:7049:d:10.1038_nature03860
    DOI: 10.1038/nature03860
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03860
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03860?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao Yang & Xue Zhang & Shiwei Ye & Jingtao Zheng & Xiaowei Huang & Fang Yu & Zhenguo Chen & Shiqing Cai & Peng Zhang, 2023. "Molecular mechanism underlying regulation of Arabidopsis CLCa transporter by nucleotides and phospholipids," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yangzhuoqun Wan & Shuangshuang Guo & Wenxuan Zhen & Lizhen Xu & Xiaoying Chen & Fangyue Liu & Yi Shen & Shuangshuang Liu & Lidan Hu & Xinyan Wang & Fengcan Ye & Qinrui Wang & Han Wen & Fan Yang, 2024. "Structural basis of adenine nucleotides regulation and neurodegenerative pathology in ClC-3 exchanger," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:436:y:2005:i:7049:d:10.1038_nature03860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.