IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v436y2005i7049d10.1038_nature03798.html
   My bibliography  Save this article

Structural basis of family-wide Rab GTPase recognition by rabenosyn-5

Author

Listed:
  • Sudharshan Eathiraj

    (University of Massachusetts Medical School)

  • Xiaojing Pan

    (University of Massachusetts Medical School)

  • Christopher Ritacco

    (University of Massachusetts Medical School
    Yale University)

  • David G. Lambright

    (University of Massachusetts Medical School)

Abstract

Rab GTPases regulate all stages of membrane trafficking, including vesicle budding, cargo sorting, transport, tethering and fusion1,2. In the inactive (GDP-bound) conformation, accessory factors facilitate the targeting of Rab GTPases to intracellular compartments3,4,5,6,7,8. After nucleotide exchange to the active (GTP-bound) conformation, Rab GTPases interact with functionally diverse effectors including lipid kinases, motor proteins and tethering complexes. How effectors distinguish between homologous Rab GTPases represents an unresolved problem with respect to the specificity of vesicular trafficking. Using a structural proteomic approach, we have determined the specificity and structural basis underlying the interaction of the multivalent effector rabenosyn-5 with the Rab family. The results demonstrate that even the structurally similar effector domains in rabenosyn-5 can achieve highly selective recognition of distinct subsets of Rab GTPases exclusively through interactions with the switch and interswitch regions. The observed specificity is determined at a family-wide level by structural diversity in the active conformation, which governs the spatial disposition of critical conserved recognition determinants, and by a small number of both positive and negative sequence determinants that allow further discrimination between Rab GTPases with similar switch conformations.

Suggested Citation

  • Sudharshan Eathiraj & Xiaojing Pan & Christopher Ritacco & David G. Lambright, 2005. "Structural basis of family-wide Rab GTPase recognition by rabenosyn-5," Nature, Nature, vol. 436(7049), pages 415-419, July.
  • Handle: RePEc:nat:nature:v:436:y:2005:i:7049:d:10.1038_nature03798
    DOI: 10.1038/nature03798
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03798
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seiichi Koike & Reinhard Jahn, 2024. "Rab GTPases and phosphoinositides fine-tune SNAREs dependent targeting specificity of intracellular vesicle traffic," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Ammu Prasanna Kumar & Suryani Lukman, 2018. "Allosteric binding sites in Rab11 for potential drug candidates," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-46, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:436:y:2005:i:7049:d:10.1038_nature03798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.