IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v435y2005i7045d10.1038_nature03814.html
   My bibliography  Save this article

Astronomical pacing of late Palaeocene to early Eocene global warming events

Author

Listed:
  • Lucas J. Lourens

    (Faculty of Geosciences, Department of Earth Sciences)

  • Appy Sluijs

    (Utrecht University)

  • Dick Kroon

    (Vrije Universiteit)

  • James C. Zachos

    (University of California)

  • Ellen Thomas

    (Wesleyan University
    Yale University)

  • Ursula Röhl

    (University of Bremen)

  • Julie Bowles

    (University of California)

  • Isabella Raffi

    (Università “G. d'Annunzio” di Chieti, Campus Universitario Madonna delle Piane)

Abstract

At the boundary between the Palaeocene and Eocene epochs, about 55 million years ago, the Earth experienced a strong global warming event, the Palaeocene–Eocene thermal maximum1,2,3,4. The leading hypothesis to explain the extreme greenhouse conditions prevalent during this period is the dissociation of 1,400 to 2,800 gigatonnes of methane from ocean clathrates5,6, resulting in a large negative carbon isotope excursion and severe carbonate dissolution in marine sediments. Possible triggering mechanisms for this event include crossing a threshold temperature as the Earth warmed gradually7, comet impact8, explosive volcanism9,10 or ocean current reorganization and erosion at continental slopes11, whereas orbital forcing has been excluded12. Here we report a distinct carbonate-poor red clay layer in deep-sea cores from Walvis ridge13, which we term the Elmo horizon. Using orbital tuning, we estimate deposition of the Elmo horizon at about 2 million years after the Palaeocene–Eocene thermal maximum. The Elmo horizon has similar geochemical and biotic characteristics as the Palaeocene–Eocene thermal maximum, but of smaller magnitude. It is coincident with carbon isotope depletion events in other ocean basins, suggesting that it represents a second global thermal maximum. We show that both events correspond to maxima in the ∼405-kyr and ∼100-kyr eccentricity cycles that post-date prolonged minima in the 2.25-Myr eccentricity cycle, implying that they are indeed astronomically paced.

Suggested Citation

  • Lucas J. Lourens & Appy Sluijs & Dick Kroon & James C. Zachos & Ellen Thomas & Ursula Röhl & Julie Bowles & Isabella Raffi, 2005. "Astronomical pacing of late Palaeocene to early Eocene global warming events," Nature, Nature, vol. 435(7045), pages 1083-1087, June.
  • Handle: RePEc:nat:nature:v:435:y:2005:i:7045:d:10.1038_nature03814
    DOI: 10.1038/nature03814
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03814
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingsong Li & Timothy J. Bralower & Lee R. Kump & Jean M. Self-Trail & James C. Zachos & William D. Rush & Marci M. Robinson, 2022. "Astrochronology of the Paleocene-Eocene Thermal Maximum on the Atlantic Coastal Plain," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Olaf K Lenz & Walter Riegel & Volker Wilde, 2021. "Greenhouse conditions in lower Eocene coastal wetlands?—Lessons from Schöningen, Northern Germany," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-40, January.
    3. Adriana Dutkiewicz & Slah Boulila & R. Dietmar Müller, 2024. "Deep-sea hiatus record reveals orbital pacing by 2.4 Myr eccentricity grand cycles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:435:y:2005:i:7045:d:10.1038_nature03814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.