IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v435y2005i7045d10.1038_nature03698.html
   My bibliography  Save this article

Structural signature of jamming in granular media

Author

Listed:
  • Eric I. Corwin

    (The University of Chicago)

  • Heinrich M. Jaeger

    (The University of Chicago)

  • Sidney R. Nagel

    (The University of Chicago)

Abstract

Glasses are rigid, but flow when the temperature is increased. Similarly, granular materials are rigid, but become unjammed and flow if sufficient shear stress is applied. The rigid and flowing phases are strikingly different, yet measurements reveal that the structures of glass and liquid are virtually indistinguishable1,2. It is therefore natural to ask whether there is a structural signature of the jammed granular state that distinguishes it from its flowing counterpart. Here we find evidence for such a signature, by measuring the contact-force distribution between particles during shearing. Because the forces are sensitive to minute variations in particle position, the distribution of forces can serve as a microscope with which to observe correlations in the positions of nearest neighbours. We find a qualitative change in the force distribution at the onset of jamming. If, as has been proposed3,4,5,6,7,8,9, the jamming and glass transitions are related, our observation of a structural signature associated with jamming hints at the existence of a similar structural difference at the glass transition—presumably too subtle for conventional scattering techniques to uncover. Our measurements also provide a determination of a granular temperature that is the counterpart in granular systems to the glass-transition temperature in liquids.

Suggested Citation

  • Eric I. Corwin & Heinrich M. Jaeger & Sidney R. Nagel, 2005. "Structural signature of jamming in granular media," Nature, Nature, vol. 435(7045), pages 1075-1078, June.
  • Handle: RePEc:nat:nature:v:435:y:2005:i:7045:d:10.1038_nature03698
    DOI: 10.1038/nature03698
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03698
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agapie Stefan C. & Whitlock Paula A., 2010. "Random packing of hyperspheres and Marsaglia's parking lot test," Monte Carlo Methods and Applications, De Gruyter, vol. 16(3-4), pages 197-209, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:435:y:2005:i:7045:d:10.1038_nature03698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.