IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v435y2005i7039d10.1038_nature03497.html
   My bibliography  Save this article

Friction enhances elasticity in granular solids

Author

Listed:
  • C. Goldenberg

    (School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences
    Physique et Mécanique des Milieux Hétérogènes, ESPCI)

  • I. Goldhirsch

    (Tel-Aviv University)

Abstract

For years, engineers have used elastic and plastic models to describe the properties of granular solids, such as sand piles and grains in silos1,2,3. However, there are theoretical4,5,6 and experimental7,8,9,10,11,12,13,14 results that challenge this approach. Specifically, it has been claimed4,5,6 that stress in granular solids propagates in a manner described by wave-like (hyperbolic) equations, rather than the elliptic equations of static elasticity. Here we report numerical simulations of the response of a two-dimensional granular slab to an external load, revealing that both approaches are valid—albeit on different length scales. For small systems that can be considered mesoscopic on the scale of the grains, a hyperbolic-like, strongly anisotropic response is expected. However, in large systems (those typically considered by engineers), the response is closer to that predicted by traditional isotropic elasticity models. Static friction, often ignored in simple models, plays a key role: it increases the elastic range and renders the response more isotropic, even beyond this range.

Suggested Citation

  • C. Goldenberg & I. Goldhirsch, 2005. "Friction enhances elasticity in granular solids," Nature, Nature, vol. 435(7039), pages 188-191, May.
  • Handle: RePEc:nat:nature:v:435:y:2005:i:7039:d:10.1038_nature03497
    DOI: 10.1038/nature03497
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03497
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Wei Wu & Yixiao Chen & Wei-Hua Wang & Walter Kob & Limei Xu, 2023. "Topology of vibrational modes predicts plastic events in glasses," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:435:y:2005:i:7039:d:10.1038_nature03497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.