IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v434y2005i7032d10.1038_nature03401.html
   My bibliography  Save this article

Obliquity pacing of the late Pleistocene glacial terminations

Author

Listed:
  • Peter Huybers

    (Woods Hole Oceanographic Institution)

  • Carl Wunsch

    (Massachusetts Institute of Technology)

Abstract

The 100,000-year timescale in the glacial/interglacial cycles of the late Pleistocene epoch (the past ∼700,000 years) is commonly attributed to control by variations in the Earth's orbit1. This hypothesis has inspired models that depend on the Earth's obliquity (∼ 40,000 yr; ∼40 kyr), orbital eccentricity (∼ 100 kyr) and precessional (∼ 20 kyr) fluctuations2,3,4,5, with the emphasis usually on eccentricity and precessional forcing. According to a contrasting hypothesis, the glacial cycles arise primarily because of random internal climate variability6,7,8. Taking these two perspectives together, there are currently more than thirty different models of the seven late-Pleistocene glacial cycles9. Here we present a statistical test of the orbital forcing hypothesis, focusing on the rapid deglaciation events known as terminations10,11. According to our analysis, the null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level, whereas the corresponding null hypotheses for eccentricity and precession cannot be rejected. The simplest inference consistent with the test results is that the ice sheets terminated every second or third obliquity cycle at times of high obliquity, similar to the original proposal by Milankovitch12. We also present simple stochastic and deterministic models that describe the timing of the late-Pleistocene glacial terminations purely in terms of obliquity forcing.

Suggested Citation

  • Peter Huybers & Carl Wunsch, 2005. "Obliquity pacing of the late Pleistocene glacial terminations," Nature, Nature, vol. 434(7032), pages 491-494, March.
  • Handle: RePEc:nat:nature:v:434:y:2005:i:7032:d:10.1038_nature03401
    DOI: 10.1038/nature03401
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03401
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. W. M. Schaffer, 2009. "A Surfeit of Cycles," Energy & Environment, , vol. 20(6), pages 985-996, October.
    2. John Reid, 2017. "There is no significant trend in global average temperature," Energy & Environment, , vol. 28(3), pages 302-315, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:434:y:2005:i:7032:d:10.1038_nature03401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.