IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v434y2005i7032d10.1038_nature03377.html
   My bibliography  Save this article

Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults

Author

Listed:
  • Jeffrey J. McGuire

    (Woods Hole Oceanographic Institution)

  • Margaret S. Boettcher

    (MIT-Woods Hole Oceanographic Institution Joint Program)

  • Thomas H. Jordan

    (University of Southern California)

Abstract

East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominately aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.

Suggested Citation

  • Jeffrey J. McGuire & Margaret S. Boettcher & Thomas H. Jordan, 2005. "Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults," Nature, Nature, vol. 434(7032), pages 457-461, March.
  • Handle: RePEc:nat:nature:v:434:y:2005:i:7032:d:10.1038_nature03377
    DOI: 10.1038/nature03377
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03377
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kádár, Viktória & Danku, Zsuzsa & Pál, Gergő & Kun, Ferenc, 2022. "Approach to failure through record breaking avalanches in a heterogeneous stress field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    2. K. M. Asim & F. Martínez-Álvarez & A. Basit & T. Iqbal, 2017. "Earthquake magnitude prediction in Hindukush region using machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 471-486, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:434:y:2005:i:7032:d:10.1038_nature03377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.