IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v434y2005i7030d10.1038_nature03403.html
   My bibliography  Save this article

The formation of cubic ice under conditions relevant to Earth's atmosphere

Author

Listed:
  • Benjamin J. Murray

    (University of British Columbia)

  • Daniel A. Knopf

    (University of British Columbia)

  • Allan K. Bertram

    (University of British Columbia)

Abstract

An important mechanism for ice cloud formation in the Earth's atmosphere is homogeneous nucleation of ice in aqueous droplets, and this process is generally assumed to produce hexagonal ice1,2. However, there are some reports that the metastable crystalline phase of ice, cubic ice, may form in the Earth's atmosphere3,4,5. Here we present laboratory experiments demonstrating that cubic ice forms when micrometre-sized droplets of pure water and aqueous solutions freeze homogeneously at cooling rates approaching those found in the atmosphere. We find that the formation of cubic ice is dominant when droplets freeze at temperatures below 190 K, which is in the temperature range relevant for polar stratospheric clouds and clouds in the tropical tropopause region. These results, together with heat transfer calculations, suggest that cubic ice will form in the Earth's atmosphere. If there were a significant fraction of cubic ice in some cold clouds this could increase their water vapour pressure, and modify their microphysics and ice particle size distributions5. Under specific conditions this may lead to enhanced dehydration of the tropopause region5.

Suggested Citation

  • Benjamin J. Murray & Daniel A. Knopf & Allan K. Bertram, 2005. "The formation of cubic ice under conditions relevant to Earth's atmosphere," Nature, Nature, vol. 434(7030), pages 202-205, March.
  • Handle: RePEc:nat:nature:v:434:y:2005:i:7030:d:10.1038_nature03403
    DOI: 10.1038/nature03403
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03403
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Hakimian & Mohammadjavad Mohebinia & Masoumeh Nazari & Ali Davoodabadi & Sina Nazifi & Zixu Huang & Jiming Bao & Hadi Ghasemi, 2021. "Freezing of few nanometers water droplets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:434:y:2005:i:7030:d:10.1038_nature03403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.