IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v434y2005i7029d10.1038_nature03350.html
   My bibliography  Save this article

Quantum computing with realistically noisy devices

Author

Listed:
  • E. Knill

    (National Institute of Standards and Technology)

Abstract

In theory, quantum computers offer a means of solving problems that would be intractable on conventional computers. Assuming that a quantum computer could be constructed, it would in practice be required to function with noisy devices called ‘gates’. These gates cause decoherence of the fragile quantum states that are central to the computer's operation. The goal of so-called ‘fault-tolerant quantum computing’ is therefore to compute accurately even when the error probability per gate (EPG) is high. Here we report a simple architecture for fault-tolerant quantum computing, providing evidence that accurate quantum computing is possible for EPGs as high as three per cent. Such EPGs have been experimentally demonstrated, but to avoid excessive resource overheads required by the necessary architecture, lower EPGs are needed. Assuming the availability of quantum resources comparable to the digital resources available in today's computers, we show that non-trivial quantum computations at EPGs of as high as one per cent could be implemented.

Suggested Citation

  • E. Knill, 2005. "Quantum computing with realistically noisy devices," Nature, Nature, vol. 434(7029), pages 39-44, March.
  • Handle: RePEc:nat:nature:v:434:y:2005:i:7029:d:10.1038_nature03350
    DOI: 10.1038/nature03350
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03350
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Zhao & Hao Jeng & Lorcán O. Conlon & Spyros Tserkis & Biveen Shajilal & Kui Liu & Timothy C. Ralph & Syed M. Assad & Ping Koy Lam, 2023. "Enhancing quantum teleportation efficacy with noiseless linear amplification," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. William P. Livingston & Machiel S. Blok & Emmanuel Flurin & Justin Dressel & Andrew N. Jordan & Irfan Siddiqi, 2022. "Experimental demonstration of continuous quantum error correction," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:434:y:2005:i:7029:d:10.1038_nature03350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.