IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v432y2004i7019d10.1038_nature03192.html
   My bibliography  Save this article

Chemical space and biology

Author

Listed:
  • Christopher M. Dobson

    (University of Cambridge)

Abstract

Chemical space — which encompasses all possible small organic molecules, including those present in biological systems — is vast. So vast, in fact, that so far only a tiny fraction of it has been explored. Nevertheless, these explorations have greatly enhanced our understanding of biology, and have led to the development of many of today's drugs. The discovery of new bioactive molecules, facilitated by a deeper understanding of the nature of the regions of chemical space that are relevant to biology, will advance our knowledge of biological processes and lead to new strategies to treat disease.

Suggested Citation

  • Christopher M. Dobson, 2004. "Chemical space and biology," Nature, Nature, vol. 432(7019), pages 824-828, December.
  • Handle: RePEc:nat:nature:v:432:y:2004:i:7019:d:10.1038_nature03192
    DOI: 10.1038/nature03192
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03192
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianyuan Deng & Zhibo Yang & Hehe Wang & Iwao Ojima & Dimitris Samaras & Fusheng Wang, 2023. "A systematic study of key elements underlying molecular property prediction," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Hua Yu & Jianxin Chen & Xue Xu & Yan Li & Huihui Zhao & Yupeng Fang & Xiuxiu Li & Wei Zhou & Wei Wang & Yonghua Wang, 2012. "A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:432:y:2004:i:7019:d:10.1038_nature03192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.