IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v432y2004i7019d10.1038_nature03183.html
   My bibliography  Save this article

Tomographic imaging of molecular orbitals

Author

Listed:
  • J. Itatani

    (National Research Council of Canada
    University of Ottawa)

  • J. Levesque

    (National Research Council of Canada
    INRS- Energie et Materiaux)

  • D. Zeidler

    (National Research Council of Canada)

  • Hiromichi Niikura

    (National Research Council of Canada
    PRESTO, Japan Science and Technology Agency)

  • H. Pépin

    (INRS- Energie et Materiaux)

  • J. C. Kieffer

    (INRS- Energie et Materiaux)

  • P. B. Corkum

    (National Research Council of Canada)

  • D. M. Villeneuve

    (National Research Council of Canada)

Abstract

Single-electron wavefunctions, or orbitals, are the mathematical constructs used to describe the multi-electron wavefunction of molecules. Because the highest-lying orbitals are responsible for chemical properties, they are of particular interest. To observe these orbitals change as bonds are formed and broken is to observe the essence of chemistry. Yet single orbitals are difficult to observe experimentally, and until now, this has been impossible on the timescale of chemical reactions. Here we demonstrate that the full three-dimensional structure of a single orbital can be imaged by a seemingly unlikely technique, using high harmonics generated from intense femtosecond laser pulses focused on aligned molecules. Applying this approach to a series of molecular alignments, we accomplish a tomographic reconstruction of the highest occupied molecular orbital of N2. The method also allows us to follow the attosecond dynamics of an electron wave packet.

Suggested Citation

  • J. Itatani & J. Levesque & D. Zeidler & Hiromichi Niikura & H. Pépin & J. C. Kieffer & P. B. Corkum & D. M. Villeneuve, 2004. "Tomographic imaging of molecular orbitals," Nature, Nature, vol. 432(7019), pages 867-871, December.
  • Handle: RePEc:nat:nature:v:432:y:2004:i:7019:d:10.1038_nature03183
    DOI: 10.1038/nature03183
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03183
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Terry Mullins & Evangelos T. Karamatskos & Joss Wiese & Jolijn Onvlee & Arnaud Rouzée & Andrey Yachmenev & Sebastian Trippel & Jochen Küpper, 2022. "Picosecond pulse-shaping for strong three-dimensional field-free alignment of generic asymmetric-top molecules," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Ondrej Dyck & Jawaher Almutlaq & David Lingerfelt & Jacob L. Swett & Mark P. Oxley & Bevin Huang & Andrew R. Lupini & Dirk Englund & Stephen Jesse, 2023. "Direct imaging of electron density with a scanning transmission electron microscope," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Lixin He & Siqi Sun & Pengfei Lan & Yanqing He & Bincheng Wang & Pu Wang & Xiaosong Zhu & Liang Li & Wei Cao & Peixiang Lu & C. D. Lin, 2022. "Filming movies of attosecond charge migration in single molecules with high harmonic spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Andrew S. Maxwell & Lars Bojer Madsen & Maciej Lewenstein, 2022. "Entanglement of orbital angular momentum in non-sequential double ionization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:432:y:2004:i:7019:d:10.1038_nature03183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.