IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v432y2004i7015d10.1038_nature02981.html
   My bibliography  Save this article

Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues

Author

Listed:
  • Chikashi Toyoshima

    (The University of Tokyo)

  • Hiromi Nomura

    (National Institute for Physiological Sciences)

  • Takeo Tsuda

Abstract

P-type ion transporting ATPases are ATP-powered ion pumps that establish ion concentration gradients across biological membranes. Transfer of bound cations to the lumenal or extracellular side occurs while the ATPase is phosphorylated. Here we report at 2.3 Å resolution the structure of the calcium-ATPase of skeletal muscle sarcoplasmic reticulum, a representative P-type ATPase that is crystallized in the absence of Ca2+ but in the presence of magnesium fluoride, a stable phosphate analogue. This and other crystal structures determined previously provide atomic models for all four principal states in the reaction cycle. These structures show that the three cytoplasmic domains rearrange to move six out of ten transmembrane helices, thereby changing the affinity of the Ca2+-binding sites and the gating of the ion pathway. Release of ADP triggers the opening of the lumenal gate and release of phosphate its closure, effected mainly through movement of the A-domain, the actuator of transmembrane gates.

Suggested Citation

  • Chikashi Toyoshima & Hiromi Nomura & Takeo Tsuda, 2004. "Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues," Nature, Nature, vol. 432(7015), pages 361-368, November.
  • Handle: RePEc:nat:nature:v:432:y:2004:i:7015:d:10.1038_nature02981
    DOI: 10.1038/nature02981
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02981
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nina Salustros & Christina Grønberg & Nisansala S. Abeyrathna & Pin Lyu & Fredrik Orädd & Kaituo Wang & Magnus Andersson & Gabriele Meloni & Pontus Gourdon, 2022. "Structural basis of ion uptake in copper-transporting P1B-type ATPases," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Hengjun Cui & Andreas U. Müller & Marc Leibundgut & Jiawen Tian & Nenad Ban & Eilika Weber-Ban, 2021. "Structures of prokaryotic ubiquitin-like protein Pup in complex with depupylase Dop reveal the mechanism of catalytic phosphate formation," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:432:y:2004:i:7015:d:10.1038_nature02981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.