IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v432y2004i7014d10.1038_nature02988.html
   My bibliography  Save this article

Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks

Author

Listed:
  • Martin R. Singleton

    (The London Research Institute, Blanche Lane, South Mimms, Potters Bar)

  • Mark S. Dillingham

    (National Institute for Medical Research, The Ridgeway)

  • Martin Gaudier

    (The London Research Institute, Blanche Lane, South Mimms, Potters Bar)

  • Stephen C. Kowalczykowski

    (University of California at Davis)

  • Dale B. Wigley

    (The London Research Institute, Blanche Lane, South Mimms, Potters Bar)

Abstract

RecBCD is a multi-functional enzyme complex that processes DNA ends resulting from a double-strand break. RecBCD is a bipolar helicase that splits the duplex into its component strands and digests them until encountering a recombinational hotspot (Chi site). The nuclease activity is then attenuated and RecBCD loads RecA onto the 3′ tail of the DNA. Here we present the crystal structure of RecBCD bound to a DNA substrate. In this initiation complex, the DNA duplex has been split across the RecC subunit to create a fork with the separated strands each heading towards different helicase motor subunits. The strands pass along tunnels within the complex, both emerging adjacent to the nuclease domain of RecB. Passage of the 3′ tail through one of these tunnels provides a mechanism for the recognition of a Chi sequence by RecC within the context of double-stranded DNA. Gating of this tunnel suggests how nuclease activity might be regulated.

Suggested Citation

  • Martin R. Singleton & Mark S. Dillingham & Martin Gaudier & Stephen C. Kowalczykowski & Dale B. Wigley, 2004. "Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks," Nature, Nature, vol. 432(7014), pages 187-193, November.
  • Handle: RePEc:nat:nature:v:432:y:2004:i:7014:d:10.1038_nature02988
    DOI: 10.1038/nature02988
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02988
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aviv Meir & Vivek B. Raina & Carly E. Rivera & Léa Marie & Lorraine S. Symington & Eric C. Greene, 2023. "The separation pin distinguishes the pro– and anti–recombinogenic functions of Saccharomyces cerevisiae Srs2," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Kai Zhou & Chun-Xu Xue & Tingting Xu & Ping Shen & Sha Wei & Kelly L. Wyres & Margaret M. C. Lam & Jinquan Liu & Haoyun Lin & Yunbo Chen & Kathryn E. Holt & Yonghong Xiao, 2023. "A point mutation in recC associated with subclonal replacement of carbapenem-resistant Klebsiella pneumoniae ST11 in China," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Rani Zananiri & Sivasubramanyan Mangapuram Venkata & Vera Gaydar & Dan Yahalom & Omri Malik & Sergei Rudnizky & Oded Kleifeld & Ariel Kaplan & Arnon Henn, 2022. "Auxiliary ATP binding sites support DNA unwinding by RecBCD," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:432:y:2004:i:7014:d:10.1038_nature02988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.