IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v432y2004i7013d10.1038_nature02996.html
   My bibliography  Save this article

Long-term decline in krill stock and increase in salps within the Southern Ocean

Author

Listed:
  • Angus Atkinson

    (Natural Environment Research Council)

  • Volker Siegel

    (Sea Fisheries Institute)

  • Evgeny Pakhomov

    (University of British Columbia
    University of Fort Hare)

  • Peter Rothery

    (NERC Centre for Ecology and Hydrology)

Abstract

Antarctic krill (Euphausia superba) and salps (mainly Salpa thompsoni) are major grazers in the Southern Ocean1,2,3,4, and krill support commercial fisheries5. Their density distributions1,3,4,6 have been described in the period 1926–51, while recent localized studies7,8,9,10 suggest short-term changes. To examine spatial and temporal changes over larger scales, we have combined all available scientific net sampling data from 1926 to 2003. This database shows that the productive southwest Atlantic sector contains >50% of Southern Ocean krill stocks, but here their density has declined since the 1970s. Spatially, within their habitat, summer krill density correlates positively with chlorophyll concentrations. Temporally, within the southwest Atlantic, summer krill densities correlate positively with sea-ice extent the previous winter. Summer food and the extent of winter sea ice are thus key factors in the high krill densities observed in the southwest Atlantic Ocean. Krill need the summer phytoplankton blooms of this sector, where winters of extensive sea ice mean plentiful winter food from ice algae, promoting larval recruitment7,8,9,10,11 and replenishing the stock. Salps, by contrast, occupy the extensive lower-productivity regions of the Southern Ocean and tolerate warmer water than krill2,3,4,12. As krill densities decreased last century, salps appear to have increased in the southern part of their range. These changes have had profound effects within the Southern Ocean food web10,13.

Suggested Citation

  • Angus Atkinson & Volker Siegel & Evgeny Pakhomov & Peter Rothery, 2004. "Long-term decline in krill stock and increase in salps within the Southern Ocean," Nature, Nature, vol. 432(7013), pages 100-103, November.
  • Handle: RePEc:nat:nature:v:432:y:2004:i:7013:d:10.1038_nature02996
    DOI: 10.1038/nature02996
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02996
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carscallen, W. Mather A. & Romanuk, Tamara N., 2012. "Structure and robustness to species loss in Arctic and Antarctic ice-shelf meta-ecosystem webs," Ecological Modelling, Elsevier, vol. 245(C), pages 208-218.
    2. Henschke, Natasha & Pakhomov, Evgeny A. & Groeneveld, Jürgen & Meyer, Bettina, 2018. "Modelling the life cycle of Salpa thompsoni," Ecological Modelling, Elsevier, vol. 387(C), pages 17-26.
    3. Patara, Lavinia & Vichi, Marcello & Masina, Simona, 2012. "Impacts of natural and anthropogenic climate variations on North Pacific plankton in an Earth System Model," Ecological Modelling, Elsevier, vol. 244(C), pages 132-147.
    4. Lavenia Ratnarajah & Rana Abu-Alhaija & Angus Atkinson & Sonia Batten & Nicholas J. Bax & Kim S. Bernard & Gabrielle Canonico & Astrid Cornils & Jason D. Everett & Maria Grigoratou & Nurul Huda Ahmad , 2023. "Monitoring and modelling marine zooplankton in a changing climate," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Matthew S. Savoca & Mehr Kumar & Zephyr Sylvester & Max F. Czapanskiy & Bettina Meyer & Jeremy A. Goldbogen & Cassandra M. Brooks, 2024. "Whale recovery and the emerging human-wildlife conflict over Antarctic krill," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Jeroen Ingels & Richard B. Aronson & Craig R. Smith & Amy Baco & Holly M. Bik & James A. Blake & Angelika Brandt & Mattias Cape & David Demaster & Emily Dolan & Eugene Domack & Spencer Fire & Heidi Ge, 2021. "Antarctic ecosystem responses following ice‐shelf collapse and iceberg calving: Science review and future research," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    7. Patara, Lavinia & Vichi, Marcello & Masina, Simona, 2013. "Reprint of: “Impacts of natural and anthropogenic climate variations on North Pacific plankton in an Earth System Model”," Ecological Modelling, Elsevier, vol. 264(C), pages 48-63.
    8. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    9. E. L. Cavan & N. Mackay & S. L. Hill & A. Atkinson & A. Belcher & A. Visser, 2024. "Antarctic krill sequester similar amounts of carbon to key coastal blue carbon habitats," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Nora-Charlotte Pauli & Clara M. Flintrop & Christian Konrad & Evgeny A. Pakhomov & Steffen Swoboda & Florian Koch & Xin-Liang Wang & Ji-Chang Zhang & Andrew S. Brierley & Matteo Bernasconi & Bettina M, 2021. "Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:432:y:2004:i:7013:d:10.1038_nature02996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.