IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v431y2004i7006d10.1038_nature02891.html
   My bibliography  Save this article

Pilus chaperones represent a new type of protein-folding catalyst

Author

Listed:
  • Michael Vetsch

    (Eidgenössische Technische Hochschule Hönggerberg)

  • Chasper Puorger

    (Eidgenössische Technische Hochschule Hönggerberg)

  • Thomas Spirig

    (Eidgenössische Technische Hochschule Hönggerberg)

  • Ulla Grauschopf

    (Eidgenössische Technische Hochschule Hönggerberg)

  • Eilika U. Weber-Ban

    (Eidgenössische Technische Hochschule Hönggerberg)

  • Rudi Glockshuber

    (Eidgenössische Technische Hochschule Hönggerberg)

Abstract

Adhesive type 1 pili from uropathogenic Escherichia coli strains have a crucial role during infection by mediating the attachment to and potentially the invasion of host tissue. These filamentous, highly oligomeric protein complexes are assembled by the ‘chaperone–usher’ pathway1, in which the individual pilus subunits fold in the bacterial periplasm and form stoichiometric complexes with a periplasmic chaperone molecule that is essential for pilus assembly2,3,4. The chaperone subsequently delivers the subunits to an assembly platform (usher) in the outer membrane, which mediates subunit assembly and translocation to the cell surface5,6,7,8. Here we show that the periplasmic type 1 pilus chaperone FimC binds non-native pilus subunits and accelerates folding of the subunit FimG by 100-fold. Moreover, we find that the FimC–FimG complex is formed quantitatively and very rapidly when folding of FimG is initiated in the presence of both FimC and the assembly-competent subunit FimF, even though the FimC–FimG complex is thermodynamically less stable than the FimF–FimG complex. FimC thus represents a previously unknown type of protein-folding catalyst, and simultaneously acts as a kinetic trap preventing spontaneous subunit assembly in the periplasm.

Suggested Citation

  • Michael Vetsch & Chasper Puorger & Thomas Spirig & Ulla Grauschopf & Eilika U. Weber-Ban & Rudi Glockshuber, 2004. "Pilus chaperones represent a new type of protein-folding catalyst," Nature, Nature, vol. 431(7006), pages 329-333, September.
  • Handle: RePEc:nat:nature:v:431:y:2004:i:7006:d:10.1038_nature02891
    DOI: 10.1038/nature02891
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02891
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew C. Gaines & Michail N. Isupov & Shamphavi Sivabalasarma & Risat Ul Haque & Mathew McLaren & Clara L. Mollat & Patrick Tripp & Alexander Neuhaus & Vicki A. M. Gold & Sonja-Verena Albers & Bertr, 2022. "Electron cryo-microscopy reveals the structure of the archaeal thread filament," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Christoph Giese & Chasper Puorger & Oleksandr Ignatov & Zuzana Bečárová & Marco E. Weber & Martin A. Schärer & Guido Capitani & Rudi Glockshuber, 2023. "Stochastic chain termination in bacterial pilus assembly," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Dawid S. Zyla & Thomas Wiegand & Paul Bachmann & Rafal Zdanowicz & Christoph Giese & Beat H. Meier & Gabriel Waksman & Manuela K. Hospenthal & Rudi Glockshuber, 2024. "The assembly platform FimD is required to obtain the most stable quaternary structure of type 1 pili," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:431:y:2004:i:7006:d:10.1038_nature02891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.