IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v431y2004i7004d10.1038_nature02804.html
   My bibliography  Save this article

Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance

Author

Listed:
  • S. A. Crooker

    (National High Magnetic Field Laboratory, Los Alamos National Laboratory)

  • D. G. Rickel

    (National High Magnetic Field Laboratory, Los Alamos National Laboratory)

  • A. V. Balatsky

    (Los Alamos National Laboratory)

  • D. L. Smith

    (Los Alamos National Laboratory)

Abstract

Not all noise in experimental measurements is unwelcome. Certain fundamental noise sources contain valuable information about the system itself—a notable example being the inherent voltage fluctuations (Johnson noise) that exist across any resistor, which allow the temperature to be determined1,2. In magnetic systems, fundamental noise can exist in the form of random spin fluctuations3,4. For example, statistical fluctuations of N paramagnetic spins should generate measurable noise of order √(N) spins, even in zero magnetic field5,6. Here we exploit this effect to perform perturbation-free magnetic resonance. We use off-resonant Faraday rotation to passively7,8 detect the magnetization noise in an equilibrium ensemble of paramagnetic alkali atoms; the random fluctuations generate spontaneous spin coherences that precess and decay with the same characteristic energy and timescales as the macroscopic magnetization of an intentionally polarized or driven ensemble. Correlation spectra of the measured spin noise reveal g-factors, nuclear spin, isotope abundance ratios, hyperfine splittings, nuclear moments and spin coherence lifetimes—without having to excite, optically pump or otherwise drive the system away from thermal equilibrium. These noise signatures scale inversely with interaction volume, suggesting a possible route towards non-perturbative, sourceless magnetic resonance of small systems.

Suggested Citation

  • S. A. Crooker & D. G. Rickel & A. V. Balatsky & D. L. Smith, 2004. "Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance," Nature, Nature, vol. 431(7004), pages 49-52, September.
  • Handle: RePEc:nat:nature:v:431:y:2004:i:7004:d:10.1038_nature02804
    DOI: 10.1038/nature02804
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02804
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Meinel & Vadim Vorobyov & Ping Wang & Boris Yavkin & Mathias Pfender & Hitoshi Sumiya & Shinobu Onoda & Junichi Isoya & Ren-Bao Liu & J. Wrachtrup, 2022. "Quantum nonlinear spectroscopy of single nuclear spins," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. M. A. Weiss & A. Herbst & J. Schlegel & T. Dannegger & M. Evers & A. Donges & M. Nakajima & A. Leitenstorfer & S. T. B. Goennenwein & U. Nowak & T. Kurihara, 2023. "Discovery of ultrafast spontaneous spin switching in an antiferromagnet by femtosecond noise correlation spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:431:y:2004:i:7004:d:10.1038_nature02804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.