IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v430y2004i7000d10.1038_nature02789.html
   My bibliography  Save this article

Sirtuin activators mimic caloric restriction and delay ageing in metazoans

Author

Listed:
  • Jason G. Wood

    (Harvard Medical School)

  • Blanka Rogina

    (University of Connecticut Health Center)

  • Siva Lavu

    (Harvard Medical School)

  • Konrad Howitz

    (BIOMOL Research Laboratories, Inc.)

  • Stephen L. Helfand

    (University of Connecticut Health Center)

  • Marc Tatar

    (Brown University)

  • David Sinclair

    (Harvard Medical School)

Abstract

Caloric restriction extends lifespan in numerous species. In the budding yeast Saccharomyces cerevisiae this effect requires Sir2 (ref. 1), a member of the sirtuin family of NAD+-dependent deacetylases2,3. Sirtuin activating compounds (STACs) can promote the survival of human cells and extend the replicative lifespan of yeast4. Here we show that resveratrol and other STACs activate sirtuins from Caenorhabditis elegans and Drosophila melanogaster, and extend the lifespan of these animals without reducing fecundity. Lifespan extension is dependent on functional Sir2, and is not observed when nutrients are restricted. Together these data indicate that STACs slow metazoan ageing by mechanisms that may be related to caloric restriction.

Suggested Citation

  • Jason G. Wood & Blanka Rogina & Siva Lavu & Konrad Howitz & Stephen L. Helfand & Marc Tatar & David Sinclair, 2004. "Sirtuin activators mimic caloric restriction and delay ageing in metazoans," Nature, Nature, vol. 430(7000), pages 686-689, August.
  • Handle: RePEc:nat:nature:v:430:y:2004:i:7000:d:10.1038_nature02789
    DOI: 10.1038/nature02789
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02789
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulrich Horst & Wei Xu, 2019. "Functional Limit Theorems for Marked Hawkes Point Measures ," Working Papers hal-02443841, HAL.
    2. Diego Calzolari & Stefania Bruschi & Laurence Coquin & Jennifer Schofield & Jacob D Feala & John C Reed & Andrew D McCulloch & Giovanni Paternostro, 2008. "Search Algorithms as a Framework for the Optimization of Drug Combinations," PLOS Computational Biology, Public Library of Science, vol. 4(12), pages 1-14, December.
    3. Horst, Ulrich & Xu, Wei, 2021. "Functional limit theorems for marked Hawkes point measures," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 94-131.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:430:y:2004:i:7000:d:10.1038_nature02789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.