IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v430y2004i6999d10.1038_nature02742.html
   My bibliography  Save this article

Cohesin relocation from sites of chromosomal loading to places of convergent transcription

Author

Listed:
  • Armelle Lengronne

    (Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories)

  • Yuki Katou

    (Genome Informatics Team)

  • Saori Mori

    (Tokyo Institute of Technology
    Yokohama City University)

  • Shihori Yokobayashi

    (University of Tokyo)

  • Gavin P. Kelly

    (Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories)

  • Takehiko Itoh

    (Mitsubishi Research Institute Inc.)

  • Yoshinori Watanabe

    (University of Tokyo
    SORST, Japan Science and Technology Agency)

  • Katsuhiko Shirahige

    (Genome Informatics Team
    Tokyo Institute of Technology)

  • Frank Uhlmann

    (Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories)

Abstract

Sister chromatids, the products of eukaryotic DNA replication, are held together by the chromosomal cohesin complex after their synthesis. This allows the spindle in mitosis to recognize pairs of replication products for segregation into opposite directions1,2,3,4,5,6. Cohesin forms large protein rings that may bind DNA strands by encircling them7, but the characterization of cohesin binding to chromosomes in vivo has remained vague. We have performed high resolution analysis of cohesin association along budding yeast chromosomes III–VI. Cohesin localizes almost exclusively between genes that are transcribed in converging directions. We find that active transcription positions cohesin at these sites, not the underlying DNA sequence. Cohesin is initially loaded onto chromosomes at separate places, marked by the Scc2/Scc4 cohesin loading complex8, from where it appears to slide to its more permanent locations. But even after sister chromatid cohesion is established, changes in transcription lead to repositioning of cohesin. Thus the sites of cohesin binding and therefore probably sister chromatid cohesion, a key architectural feature of mitotic chromosomes, display surprising flexibility. Cohesin localization to places of convergent transcription is conserved in fission yeast, suggesting that it is a common feature of eukaryotic chromosomes.

Suggested Citation

  • Armelle Lengronne & Yuki Katou & Saori Mori & Shihori Yokobayashi & Gavin P. Kelly & Takehiko Itoh & Yoshinori Watanabe & Katsuhiko Shirahige & Frank Uhlmann, 2004. "Cohesin relocation from sites of chromosomal loading to places of convergent transcription," Nature, Nature, vol. 430(6999), pages 573-578, July.
  • Handle: RePEc:nat:nature:v:430:y:2004:i:6999:d:10.1038_nature02742
    DOI: 10.1038/nature02742
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02742
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Peripolli & Leticia Meneguello & Chiara Perrod & Tanya Singh & Harshil Patel & Sazia T. Rahman & Koshiro Kiso & Peter Thorpe & Vincenzo Calvanese & Cosetta Bertoli & Robertus A. M. de Bruin, 2024. "Oncogenic c-Myc induces replication stress by increasing cohesins chromatin occupancy in a CTCF-dependent manner," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Dácil Alonso-Gil & Ana Cuadrado & Daniel Giménez-Llorente & Miriam Rodríguez-Corsino & Ana Losada, 2023. "Different NIPBL requirements of cohesin-STAG1 and cohesin-STAG2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:430:y:2004:i:6999:d:10.1038_nature02742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.