IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v430y2004i6996d10.1038_nature02650.html
   My bibliography  Save this article

Cyclin-dependent kinases regulate the antiproliferative function of Smads

Author

Listed:
  • Isao Matsuura

    (The State University of New Jersey
    The State University of New Jersey
    Cancer Institute of New Jersey)

  • Natalia G. Denissova

    (The State University of New Jersey
    The State University of New Jersey
    Cancer Institute of New Jersey)

  • Guannan Wang

    (The State University of New Jersey
    The State University of New Jersey
    Cancer Institute of New Jersey)

  • Dongming He

    (The State University of New Jersey
    The State University of New Jersey
    Cancer Institute of New Jersey)

  • Jianyin Long

    (The State University of New Jersey
    The State University of New Jersey
    Cancer Institute of New Jersey)

  • Fang Liu

    (The State University of New Jersey
    The State University of New Jersey
    Cancer Institute of New Jersey)

Abstract

Transforming growth factor-β (TGF-β) potently inhibits cell cycle progression at the G1 phase1,2. Smad3 has a key function in mediating the TGF-β growth-inhibitory response. Here we show that Smad3 is a major physiological substrate of the G1 cyclin-dependent kinases CDK4 and CDK2. Except for the retinoblastoma protein family3,4, Smad3 is the only CDK4 substrate demonstrated so far. We have mapped CDK4 and CDK2 phosphorylation sites to Thr 8, Thr 178 and Ser 212 in Smad3. Mutation of the CDK phosphorylation sites increases Smad3 transcriptional activity, leading to higher expression of the CDK inhibitor p15. Mutation of the CDK phosphorylation sites of Smad3 also increases its ability to downregulate the expression of c-myc. Using Smad3-/- mouse embryonic fibroblasts and other epithelial cell lines, we further show that Smad3 inhibits cell cycle progression from G1 to S phase and that mutation of the CDK phosphorylation sites in Smad3 increases this ability. Taken together, these findings indicate that CDK phosphorylation of Smad3 inhibits its transcriptional activity and antiproliferative function. Because cancer cells often contain high levels of CDK activity5,6, diminishing Smad3 activity by CDK phosphorylation may contribute to tumorigenesis and TGF-β resistance in cancers.

Suggested Citation

  • Isao Matsuura & Natalia G. Denissova & Guannan Wang & Dongming He & Jianyin Long & Fang Liu, 2004. "Cyclin-dependent kinases regulate the antiproliferative function of Smads," Nature, Nature, vol. 430(6996), pages 226-231, July.
  • Handle: RePEc:nat:nature:v:430:y:2004:i:6996:d:10.1038_nature02650
    DOI: 10.1038/nature02650
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02650
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiawei Zhang & Yichao Gan & Hongzhi Li & Jie Yin & Xin He & Liming Lin & Senlin Xu & Zhipeng Fang & Byung-wook Kim & Lina Gao & Lili Ding & Eryun Zhang & Xiaoxiao Ma & Junfeng Li & Ling Li & Yang Xu &, 2022. "Inhibition of the CDK2 and Cyclin A complex leads to autophagic degradation of CDK2 in cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Sang-A Park & Yun-Ji Lim & Wai Lim Ku & Dunfang Zhang & Kairong Cui & Liu-Ya Tang & Cheryl Chia & Peter Zanvit & Zuojia Chen & Wenwen Jin & Dandan Wang & Junji Xu & Ousheng Liu & Fu Wang & Alexander C, 2022. "Opposing functions of circadian protein DBP and atypical E2F family E2F8 in anti-tumor Th9 cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:430:y:2004:i:6996:d:10.1038_nature02650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.