IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v430y2004i6995d10.1038_nature02638.html
   My bibliography  Save this article

Role of metal-reducing bacteria in arsenic release from Bengal delta sediments

Author

Listed:
  • Farhana S. Islam

    (The University of Manchester)

  • Andrew G. Gault

    (The University of Manchester)

  • Christopher Boothman

    (The University of Manchester)

  • David A. Polya

    (The University of Manchester)

  • John M. Charnock

    (The University of Manchester
    CCLRC Daresbury Laboratory)

  • Debashis Chatterjee

    (The University of Kalyani)

  • Jonathan R. Lloyd

    (The University of Manchester)

Abstract

The contamination of ground waters, abstracted for drinking and irrigation, by sediment-derived arsenic threatens the health of tens of millions of people worldwide, most notably in Bangladesh and West Bengal1,2,3. Despite the calamitous effects on human health arising from the extensive use of arsenic-enriched ground waters in these regions, the mechanisms of arsenic release from sediments remain poorly characterized and are topics of intense international debate4,5,6,7,8. We use a microscosm-based approach to investigate these mechanisms: techniques of microbiology and molecular ecology are used in combination with aqueous and solid phase speciation analysis of arsenic. Here we show that anaerobic metal-reducing bacteria can play a key role in the mobilization of arsenic in sediments collected from a contaminated aquifer in West Bengal. We also show that, for the sediments in this study, arsenic release took place after Fe(iii) reduction, rather than occurring simultaneously. Identification of the critical factors controlling the biogeochemical cycling of arsenic is one important contribution to fully informing the development of effective strategies to manage these and other similar arsenic-rich ground waters worldwide.

Suggested Citation

  • Farhana S. Islam & Andrew G. Gault & Christopher Boothman & David A. Polya & John M. Charnock & Debashis Chatterjee & Jonathan R. Lloyd, 2004. "Role of metal-reducing bacteria in arsenic release from Bengal delta sediments," Nature, Nature, vol. 430(6995), pages 68-71, July.
  • Handle: RePEc:nat:nature:v:430:y:2004:i:6995:d:10.1038_nature02638
    DOI: 10.1038/nature02638
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02638
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debashis Chatterjee & Pinaki Ghosh & Shilajit Barua & Aishwarya Mukherjee, 2017. "Biogeochemical activity in arsenic prone zone," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 1(3), pages 78-79, January.
    2. Dipankar Chakraborti & Sushant K. Singh & Mohammad Mahmudur Rahman & Rathindra Nath Dutta & Subhas Chandra Mukherjee & Shyamapada Pati & Probir Bijoy Kar, 2018. "Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger," IJERPH, MDPI, vol. 15(2), pages 1-19, January.
    3. Xuhui Chen & Qianqian Su & Huai Chen & Dan Xue, 2021. "A High–Resolution Accumulation Record of Arsenic and Mercury after the First Industrial Revolution from a Peatland in Zoige, Qinghai–Tibet Plateau," Land, MDPI, vol. 10(11), pages 1-14, November.
    4. Manoj Kumar & AL. Ramanathan, 2018. "Vertical Geochemical Variations and Speciation Studies of As, Fe, Mn, Zn, and Cu in the Sediments of the Central Gangetic Basin: Sequential Extraction and Statistical Approach," IJERPH, MDPI, vol. 15(2), pages 1-22, January.
    5. Swapnila Roy, 2018. "Distribution of Arsenic Species in Surface Water Using Flow Injection Hydride Generation Atomic Absorption Spectrometry and Furnace Method," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 12(4), pages 104-110, June.
    6. Md. Khalequzzaman & Fazlay S. Faruque & Amal K. Mitra, 2005. "Assessment of Arsenic Contamination of Groundwater and Health Problems in Bangladesh," IJERPH, MDPI, vol. 2(2), pages 1-10, August.
    7. Pandey, Vimal Chandra & Singh, Jay Shankar & Singh, Rana P. & Singh, Nandita & Yunus, M., 2011. "Arsenic hazards in coal fly ash and its fate in Indian scenario," Resources, Conservation & Recycling, Elsevier, vol. 55(9), pages 819-835.
    8. Yang Yang & Xi Xie & Mengna Chen & Zuoming Xie & Jia Wang, 2022. "Effects of Sulfide Input on Arsenate Bioreduction and Its Reduction Product Formation in Sulfidic Groundwater," IJERPH, MDPI, vol. 19(24), pages 1-13, December.
    9. Zhou Jiang & Xin Shen & Bo Shi & Mengjie Cui & Yanhong Wang & Ping Li, 2022. "Arsenic Mobilization and Transformation by Ammonium-Generating Bacteria Isolated from High Arsenic Groundwater in Hetao Plain, China," IJERPH, MDPI, vol. 19(15), pages 1-15, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:430:y:2004:i:6995:d:10.1038_nature02638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.