IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v429y2004i6989d10.1038_nature02535.html
   My bibliography  Save this article

A highly active synthetic mammalian retrotransposon

Author

Listed:
  • Jeffrey S. Han

    (The Johns Hopkins University School of Medicine)

  • Jef D. Boeke

    (The Johns Hopkins University School of Medicine)

Abstract

LINE-1 (L1) elements are retrotransposons that comprise large fractions of mammalian genomes1. Transcription through L1 open reading frames is inefficient owing to an elongation defect2, inhibiting the robust expression of L1 RNA and proteins, the substrate and enzyme(s) for retrotransposition3,4,5. This elongation defect probably controls L1 transposition frequency in mammalian cells. Here we report bypassing this transcriptional defect by synthesizing the open reading frames of L1 from synthetic oligonucleotides, altering 24% of the nucleic acid sequence without changing the amino acid sequence. Such resynthesis led to greatly enhanced steady-state L1 RNA and protein levels. Remarkably, when the synthetic open reading frames were substituted for the wild-type open reading frames in an established retrotransposition assay4, transposition levels increased more than 200-fold. This indicates that there are probably no large, rigidly conserved cis-acting nucleic acid sequences required for retrotransposition within L1 coding regions. These synthetic retrotransposons are also the most highly active L1 elements known so far and have potential as practical tools for manipulating mammalian genomes.

Suggested Citation

  • Jeffrey S. Han & Jef D. Boeke, 2004. "A highly active synthetic mammalian retrotransposon," Nature, Nature, vol. 429(6989), pages 314-318, May.
  • Handle: RePEc:nat:nature:v:429:y:2004:i:6989:d:10.1038_nature02535
    DOI: 10.1038/nature02535
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02535
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricia Gerdes & Sue Mei Lim & Adam D. Ewing & Michael R. Larcombe & Dorothy Chan & Francisco J. Sanchez-Luque & Lucinda Walker & Alexander L. Carleton & Cini James & Anja S. Knaupp & Patricia E. Car, 2022. "Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:429:y:2004:i:6989:d:10.1038_nature02535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.