IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v429y2004i6989d10.1038_nature02519.html
   My bibliography  Save this article

Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain

Author

Listed:
  • Jin-Biao Ma

    (Memorial Sloan-Kettering Cancer Center)

  • Keqiong Ye

    (Memorial Sloan-Kettering Cancer Center)

  • Dinshaw J. Patel

    (Memorial Sloan-Kettering Cancer Center)

Abstract

Short RNAs mediate gene silencing, a process associated with virus resistance, developmental control and heterochromatin formation in eukaryotes1,2,3,4,5. RNA silencing is initiated through Dicer-mediated processing of double-stranded RNA into small interfering RNA (siRNA)6,7. The siRNA guide strand associates with the Argonaute protein in silencing effector complexes, recognizes complementary sequences and targets them for silencing8,9,10,11. The PAZ domain is an RNA-binding module found in Argonaute and some Dicer proteins and its structure has been determined in the free state12,13,14. Here, we report the 2.6 Å crystal structure of the PAZ domain from human Argonaute eIF2c1 bound to both ends of a 9-mer siRNA-like duplex. In a sequence-independent manner, PAZ anchors the 2-nucleotide 3′ overhang of the siRNA-like duplex within a highly conserved binding pocket, and secures the duplex by binding the 7-nucleotide phosphodiester backbone of the overhang-containing strand and capping the 5′-terminal residue of the complementary strand. On the basis of the structure and on binding assays, we propose that PAZ might serve as an siRNA-end-binding module for siRNA transfer in the RNA silencing pathway, and as an anchoring site for the 3′ end of guide RNA within silencing effector complexes.

Suggested Citation

  • Jin-Biao Ma & Keqiong Ye & Dinshaw J. Patel, 2004. "Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain," Nature, Nature, vol. 429(6989), pages 318-322, May.
  • Handle: RePEc:nat:nature:v:429:y:2004:i:6989:d:10.1038_nature02519
    DOI: 10.1038/nature02519
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02519
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangkai Zhen & Xiaolong Xu & Le Ye & Song Xie & Zhijie Huang & Sheng Yang & Yanhui Wang & Jinyu Li & Feng Long & Songying Ouyang, 2024. "Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:429:y:2004:i:6989:d:10.1038_nature02519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.