IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v427y2004i6977d10.1038_nature02325.html
   My bibliography  Save this article

Giant magnetoresistance in organic spin-valves

Author

Listed:
  • Z. H. Xiong

    (University of Utah)

  • Di Wu

    (University of Utah)

  • Z. Valy Vardeny

    (University of Utah)

  • Jing Shi

    (University of Utah)

Abstract

A spin valve is a layered structure of magnetic and non-magnetic (spacer) materials whose electrical resistance depends on the spin state of electrons passing through the device and so can be controlled by an external magnetic field. The discoveries of giant magnetoresistance1 and tunnelling magnetoresistance2 in metallic spin valves have revolutionized applications such as magnetic recording and memory, and launched the new field of spin electronics3—‘spintronics’. Intense research efforts are now devoted to extending these spin-dependent effects to semiconductor materials. But while there have been noteworthy advances in spin injection and detection using inorganic semiconductors4,5,6, spin-valve devices with semiconducting spacers have not yet been demonstrated. π-conjugated organic semiconductors may offer a promising alternative approach to semiconductor spintronics, by virtue of their relatively strong electron–phonon coupling7 and large spin coherence8. Here we report the injection, transport and detection of spin-polarized carriers using an organic semiconductor as the spacer layer in a spin-valve structure, yielding low-temperature giant magnetoresistance effects as large as 40 per cent.

Suggested Citation

  • Z. H. Xiong & Di Wu & Z. Valy Vardeny & Jing Shi, 2004. "Giant magnetoresistance in organic spin-valves," Nature, Nature, vol. 427(6977), pages 821-824, February.
  • Handle: RePEc:nat:nature:v:427:y:2004:i:6977:d:10.1038_nature02325
    DOI: 10.1038/nature02325
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02325
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueli Yang & Ankang Guo & Jie Yang & Jinyang Chen & Ke Meng & Shunhua Hu & Ran Duan & Mingliang Zhu & Wenkang Shi & Yang Qin & Rui Zhang & Haijun Yang & Jikun Li & Lidan Guo & Xiangnan Sun & Yunqi Liu, 2024. "Halogenated-edge polymeric semiconductor for efficient spin transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Lidan Guo & Xianrong Gu & Shunhua Hu & Wenchao Sun & Rui Zhang & Yang Qin & Ke Meng & Xiangqian Lu & Yayun Liu & Jiaxing Wang & Peijie Ma & Cheng Zhang & Ankang Guo & Tingting Yang & Xueli Yang & Guor, 2024. "Strain-restricted transfer of ferromagnetic electrodes for constructing reproducibly superior-quality spintronic devices," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Wang, Liqiu & Zhang, Yuxiang & Cheng, Lin, 2009. "Magic microfluidic T-junctions: Valving and bubbling," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1530-1537.
    4. Guangyi Chen & Shaomian Qi & Jianqiao Liu & Di Chen & Jiongjie Wang & Shili Yan & Yu Zhang & Shimin Cao & Ming Lu & Shibing Tian & Kangyao Chen & Peng Yu & Zheng Liu & X. C. Xie & Jiang Xiao & Ryuichi, 2021. "Electrically switchable van der Waals magnon valves," Nature Communications, Nature, vol. 12(1), pages 1-5, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:427:y:2004:i:6977:d:10.1038_nature02325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.