IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v427y2004i6976d10.1038_nature02290.html
   My bibliography  Save this article

Organization of genetic variation in individuals of arbuscular mycorrhizal fungi

Author

Listed:
  • Teresa E. Pawlowska

    (University of California)

  • John W. Taylor

    (University of California)

Abstract

Arbuscular mycorrhizal (AM) fungi (Glomeromycota) are thought to be the oldest group of asexual multicellular organisms. They colonize the roots of most land plants, where they facilitate mineral uptake from the soil in exchange for plant-assimilated carbon1. Cells of AM fungi contain hundreds of nuclei. Unusual polymorphism of ribosomal DNA observed in individual spores of AM fungi inspired a hypothesis that heterokaryosis—that is, the coexistence of many dissimilar nuclei in cells—occurs throughout the AM fungal life history2,3. Here we report a genetic approach to test the hypothesis of heterokaryosis in AM fungi. Our study of the transmission of polymorphic genetic markers in natural isolates of Glomus etunicatum, coupled with direct amplification of rDNA from microdissected nuclei by polymerase chain reaction, supports the alternative hypothesis of homokaryosis, in which nuclei populating AM fungal individuals are genetically uniform. Intrasporal rDNA polymorphism contained in each nucleus signals a relaxation of concerted evolution4, a recombination-driven process that is responsible for homogenizing rDNA repeats5. Polyploid organization of glomeromycotan genomes could accommodate intranuclear rDNA polymorphism and buffer these apparently asexual organisms against the effects of accumulating mutations.

Suggested Citation

  • Teresa E. Pawlowska & John W. Taylor, 2004. "Organization of genetic variation in individuals of arbuscular mycorrhizal fungi," Nature, Nature, vol. 427(6976), pages 733-737, February.
  • Handle: RePEc:nat:nature:v:427:y:2004:i:6976:d:10.1038_nature02290
    DOI: 10.1038/nature02290
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02290
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Sultanov & Andreas Hochwagen, 2022. "Varying strength of selection contributes to the intragenomic diversity of rRNA genes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:427:y:2004:i:6976:d:10.1038_nature02290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.