IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v427y2004i6975d10.1038_nature02287.html
   My bibliography  Save this article

An optimal bronchial tree may be dangerous

Author

Listed:
  • B. Mauroy

    (Ecole Normale Supérieure de Cachan)

  • M. Filoche

    (Ecole Normale Supérieure de Cachan
    CNRS Ecole Polytechnique)

  • E. R. Weibel

    (University of Bern)

  • B. Sapoval

    (Ecole Normale Supérieure de Cachan
    CNRS Ecole Polytechnique)

Abstract

The geometry and dimensions of branched structures such as blood vessels or airways are important factors in determining the efficiency of physiological processes. It has been shown that fractal trees can be space filling1 and can ensure minimal dissipation2,3,4. The bronchial tree of most mammalian lungs is a good example of an efficient distribution system with an approximate fractal structure5,6. Here we present a study of the compatibility between physical optimization and physiological robustness in the design of the human bronchial tree. We show that this physical optimization is critical in the sense that small variations in the geometry can induce very large variations in the net air flux. Maximum physical efficiency therefore cannot be a sufficient criterion for the physiological design of bronchial trees. Rather, the design of bronchial trees must be provided with a safety factor and the capacity for regulating airway calibre. Paradoxically, our results suggest that bronchial malfunction related to asthma is a necessary consequence of the optimized efficiency of the tree structure.

Suggested Citation

  • B. Mauroy & M. Filoche & E. R. Weibel & B. Sapoval, 2004. "An optimal bronchial tree may be dangerous," Nature, Nature, vol. 427(6975), pages 633-636, February.
  • Handle: RePEc:nat:nature:v:427:y:2004:i:6975:d:10.1038_nature02287
    DOI: 10.1038/nature02287
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02287
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmet Can Uçar & Dmitrii Kamenev & Kazunori Sunadome & Dominik Fachet & Francois Lallemend & Igor Adameyko & Saida Hadjab & Edouard Hannezo, 2021. "Theory of branching morphogenesis by local interactions and global guidance," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Jinxiang Xi & Weizhong Zhao & Jiayao Eddie Yuan & JongWon Kim & Xiuhua Si & Xiaowei Xu, 2015. "Detecting Lung Diseases from Exhaled Aerosols: Non-Invasive Lung Diagnosis Using Fractal Analysis and SVM Classification," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-19, September.
    3. Ionescu, Clara & Kelly, James F., 2017. "Fractional calculus for respiratory mechanics: Power law impedance, viscoelasticity, and tissue heterogeneity," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 433-440.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:427:y:2004:i:6975:d:10.1038_nature02287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.