IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v427y2004i6973d10.1038_nature02249.html
   My bibliography  Save this article

Friction falls towards zero in quartz rock as slip velocity approaches seismic rates

Author

Listed:
  • Giulio Di Toro

    (Universita’ di Padova)

  • David L. Goldsby

    (Brown University)

  • Terry E. Tullis

    (Brown University)

Abstract

An important unsolved problem in earthquake mechanics is to determine the resistance to slip on faults in the Earth's crust during earthquakes1. Knowledge of coseismic slip resistance is critical for understanding the magnitude of shear-stress reduction and hence the near-fault acceleration that can occur during earthquakes, which affects the amount of damage that earthquakes are capable of causing. In particular, a long-unresolved problem is the apparently low strength of major faults2,3,4,5,6, which may be caused by low coseismic frictional resistance3. The frictional properties of rocks at slip velocities up to 3 mm s-1 and for slip displacements characteristic of large earthquakes have been recently simulated under laboratory conditions7. Here we report data on quartz rocks that indicate an extraordinary progressive decrease in frictional resistance with increasing slip velocity above 1 mm s-1. This reduction extrapolates to zero friction at seismic slip rates of ∼1 m s-1, and appears to be due to the formation of a thin layer of silica gel on the fault surface: it may explain the low strength of major faults during earthquakes.

Suggested Citation

  • Giulio Di Toro & David L. Goldsby & Terry E. Tullis, 2004. "Friction falls towards zero in quartz rock as slip velocity approaches seismic rates," Nature, Nature, vol. 427(6973), pages 436-439, January.
  • Handle: RePEc:nat:nature:v:427:y:2004:i:6973:d:10.1038_nature02249
    DOI: 10.1038/nature02249
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02249
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matcharashvili, Teimuraz & Chelidze, Tamaz & Zhukova, Natalia, 2015. "Assessment of the relative ratio of correlated and uncorrelated waiting times in the Southern California earthquakes catalogue," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 291-303.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:427:y:2004:i:6973:d:10.1038_nature02249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.