Author
Listed:
- Tomoyuki Mizukami
(University of Kyoto
Graduate School of Environmental Studies, University of Nagoya)
- Simon R. Wallis
(Graduate School of Environmental Studies, University of Nagoya)
- Junji Yamamoto
(University of Tokyo
Tokyo Institute of Technology)
Abstract
Tectonic plate motion is thought to cause solid-state plastic flow within the underlying upper mantle and accordingly lead to the development of a lattice preferred orientation of the constituent olivine crystals1,2,3. The mechanical anisotropy that results from such preferred orientation typically produces a direction of maximum seismic wave velocity parallel to the plate motion direction4,5. This has been explained by the existence of an olivine preferred orientation with an ‘a-axis’ maximum parallel to the induced mantle flow direction3,5,6,7,8. In subduction zones, however, the olivine a axes have been inferred to be arranged roughly perpendicular to plate motion9,10,11,12,13, which has usually been ascribed to localized complex mantle flow patterns10,11,12,13. Recent experimental work14 suggests an alternative explanation: under conditions of high water activity, a ‘B-type’ olivine preferred orientation may form, with the a-axis maximum perpendicular to the flow direction. Natural examples of such B-type preferred orientation are, however, almost entirely unknown. Here we document widespread B-type olivine preferred orientation patterns from a subduction-type metamorphic belt in southwest Japan and show that these patterns developed in the presence of water. Our discovery implies that mantle flow above subduction zones may be much simpler than has generally been thought.
Suggested Citation
Tomoyuki Mizukami & Simon R. Wallis & Junji Yamamoto, 2004.
"Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum,"
Nature, Nature, vol. 427(6973), pages 432-436, January.
Handle:
RePEc:nat:nature:v:427:y:2004:i:6973:d:10.1038_nature02179
DOI: 10.1038/nature02179
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:427:y:2004:i:6973:d:10.1038_nature02179. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.