IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v426y2003i6968d10.1038_nature02264.html
   My bibliography  Save this article

Folding proteins in fatal ways

Author

Listed:
  • Dennis J. Selkoe

    (Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital)

Abstract

Human diseases characterized by insoluble extracellular deposits of proteins have been recognized for almost two centuries. Such amyloidoses were once thought to represent arcane secondary phenomena of questionable pathogenic significance. But it is has now become clear that many different proteins can misfold and form extracellular or intracellular aggregates that initiate profound cellular dysfunction. Particularly challenging examples of such disorders occur in the post-mitotic environment of the neuron and include Alzheimer's and Parkinson's diseases. Understanding some of the principles of protein folding has helped to explain how such diseases arise, with attendant therapeutic insights.

Suggested Citation

  • Dennis J. Selkoe, 2003. "Folding proteins in fatal ways," Nature, Nature, vol. 426(6968), pages 900-904, December.
  • Handle: RePEc:nat:nature:v:426:y:2003:i:6968:d:10.1038_nature02264
    DOI: 10.1038/nature02264
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02264
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mookyung Cheon & Iksoo Chang & Sandipan Mohanty & Leila M Luheshi & Christopher M Dobson & Michele Vendruscolo & Giorgio Favrin, 2007. "Structural Reorganisation and Potential Toxicity of Oligomeric Species Formed during the Assembly of Amyloid Fibrils," PLOS Computational Biology, Public Library of Science, vol. 3(9), pages 1-12, September.
    2. Wen-Ting Chu & Ji-Long Zhang & Qing-Chuan Zheng & Lin Chen & Hong-Xing Zhang, 2013. "Insights into the Folding and Unfolding Processes of Wild-Type and Mutated SH3 Domain by Molecular Dynamics and Replica Exchange Molecular Dynamics Simulations," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-9, May.
    3. Etienne Maisonneuve & Adrien Ducret & Pierre Khoueiry & Sabrina Lignon & Sonia Longhi & Emmanuel Talla & Sam Dukan, 2009. "Rules Governing Selective Protein Carbonylation," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-12, October.
    4. Noah S Bieler & Tuomas P J Knowles & Daan Frenkel & Robert Vácha, 2012. "Connecting Macroscopic Observables and Microscopic Assembly Events in Amyloid Formation Using Coarse Grained Simulations," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.
    5. Elodie Monsellier & Matteo Ramazzotti & Niccolò Taddei & Fabrizio Chiti, 2008. "Aggregation Propensity of the Human Proteome," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-9, October.
    6. Allen W Bryan Jr. & Matthew Menke & Lenore J Cowen & Susan L Lindquist & Bonnie Berger, 2009. "BETASCAN: Probable β-amyloids Identified by Pairwise Probabilistic Analysis," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-11, March.
    7. Carlos Família & Sarah R Dennison & Alexandre Quintas & David A Phoenix, 2015. "Prediction of Peptide and Protein Propensity for Amyloid Formation," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    8. Stefan Auer & Filip Meersman & Christopher M Dobson & Michele Vendruscolo, 2008. "A Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric Aggregates," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-7, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:426:y:2003:i:6968:d:10.1038_nature02264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.