IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v426y2003i6968d10.1038_nature02114.html
   My bibliography  Save this article

Recent ice ages on Mars

Author

Listed:
  • James W. Head

    (Brown University)

  • John F. Mustard

    (Brown University)

  • Mikhail A. Kreslavsky

    (Brown University
    Astronomical Institute, Kharkov National University)

  • Ralph E. Milliken

    (Brown University)

  • David R. Marchant

    (Boston University)

Abstract

A key pacemaker of ice ages on the Earth is climatic forcing due to variations in planetary orbital parameters. Recent Mars exploration has revealed dusty, water-ice-rich mantling deposits that are layered, metres thick and latitude dependent, occurring in both hemispheres from mid-latitudes to the poles. Here we show evidence that these deposits formed during a geologically recent ice age that occurred from about 2.1 to 0.4 Myr ago. The deposits were emplaced symmetrically down to latitudes of ∼30°—equivalent to Saudi Arabia and the southern United States on the Earth—in response to the changing stability of water ice and dust during variations in obliquity (the angle between Mars' pole of rotation and the ecliptic plane) reaching 30–35°. Mars is at present in an ‘interglacial’ period, and the ice-rich deposits are undergoing reworking, degradation and retreat in response to the current instability of near-surface ice. Unlike the Earth, martian ice ages are characterized by warmer polar climates and enhanced equatorward transport of atmospheric water and dust to produce widespread smooth deposits down to mid-latitudes.

Suggested Citation

  • James W. Head & John F. Mustard & Mikhail A. Kreslavsky & Ralph E. Milliken & David R. Marchant, 2003. "Recent ice ages on Mars," Nature, Nature, vol. 426(6968), pages 797-802, December.
  • Handle: RePEc:nat:nature:v:426:y:2003:i:6968:d:10.1038_nature02114
    DOI: 10.1038/nature02114
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02114
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Lagain & S. Bouley & B. Zanda & K. Miljković & A. Rajšić & D. Baratoux & V. Payré & L. S. Doucet & N. E. Timms & R. Hewins & G. K. Benedix & V. Malarewic & K. Servis & P. A. Bland, 2022. "Early crustal processes revealed by the ejection site of the oldest martian meteorite," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:426:y:2003:i:6968:d:10.1038_nature02114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.