IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v426y2003i6967d10.1038_nature02191.html
   My bibliography  Save this article

Backtracking by single RNA polymerase molecules observed at near-base-pair resolution

Author

Listed:
  • Joshua W. Shaevitz

    (Stanford University)

  • Elio A. Abbondanzieri

    (Stanford University)

  • Robert Landick

    (University of Wisconsin)

  • Steven M. Block

    (Stanford University
    Stanford University)

Abstract

Escherichia coli RNA polymerase (RNAP) synthesizes RNA with remarkable fidelity in vivo1. Its low error rate may be achieved by means of a ‘proofreading’ mechanism comprised of two sequential events. The first event (backtracking) involves a transcriptionally upstream motion of RNAP through several base pairs, which carries the 3′ end of the nascent RNA transcript away from the enzyme active site. The second event (endonucleolytic cleavage) occurs after a variable delay and results in the scission and release of the most recently incorporated ribonucleotides, freeing up the active site. Here, by combining ultrastable optical trapping apparatus with a novel two-bead assay to monitor transcriptional elongation with near-base-pair precision, we observed backtracking and recovery by single molecules of RNAP. Backtracking events (∼5 bp) occurred infrequently at locations throughout the DNA template and were associated with pauses lasting 20 s to >30 min. Inosine triphosphate increased the frequency of backtracking pauses, whereas the accessory proteins GreA and GreB, which stimulate the cleavage of nascent RNA, decreased the duration of such pauses.

Suggested Citation

  • Joshua W. Shaevitz & Elio A. Abbondanzieri & Robert Landick & Steven M. Block, 2003. "Backtracking by single RNA polymerase molecules observed at near-base-pair resolution," Nature, Nature, vol. 426(6967), pages 684-687, December.
  • Handle: RePEc:nat:nature:v:426:y:2003:i:6967:d:10.1038_nature02191
    DOI: 10.1038/nature02191
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02191
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jordan Douglas & Richard Kingston & Alexei J Drummond, 2020. "Bayesian inference and comparison of stochastic transcription elongation models," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-21, February.
    2. Jin Qian & Bing Wang & Irina Artsimovitch & David Dunlap & Laura Finzi, 2024. "Force and the α-C-terminal domains bias RNA polymerase recycling," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:426:y:2003:i:6967:d:10.1038_nature02191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.