Author
Listed:
- Kira E. Poskanzer
(University of California, San Francisco)
- Kurt W. Marek
(University of California, San Francisco)
- Sean T. Sweeney
(University of California, San Francisco)
- Graeme W. Davis
(University of California, San Francisco)
Abstract
Neurotransmission requires a balance of synaptic vesicle exocytosis and endocytosis1. Synaptotagmin I (Syt I) is widely regarded as the primary calcium sensor for synaptic vesicle exocytosis2,3,4,5,6. Previous biochemical data suggest that Syt I may also function during synaptic vesicle endocytosis7,8,9,10,11,12,13,14,15,16; however, ultrastructural analyses at synapses with impaired Syt I function have provided an indirect and conflicting view of the role of Syt I during synaptic vesicle endocytosis3,8,9,10,14. Until now it has not been possible experimentally to separate the exocytic and endocytic functions of Syt I in vivo. Here, we test directly the role of Syt I during endocytosis in vivo. We use quantitative live imaging of a pH-sensitive green fluorescent protein fused to a synaptic vesicle protein (synapto-pHluorin) to measure the kinetics of endocytosis in sytI-null Drosophila. We then combine live imaging of the synapto-pHluorins with photoinactivation of Syt I, through fluorescein-assisted light inactivation, after normal Syt I-mediated vesicle exocytosis. By inactivating Syt I only during endocytosis, we demonstrate that Syt I is necessary for the endocytosis of synaptic vesicles that have undergone exocytosis using a functional Syt I protein.
Suggested Citation
Kira E. Poskanzer & Kurt W. Marek & Sean T. Sweeney & Graeme W. Davis, 2003.
"Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo,"
Nature, Nature, vol. 426(6966), pages 559-563, December.
Handle:
RePEc:nat:nature:v:426:y:2003:i:6966:d:10.1038_nature02184
DOI: 10.1038/nature02184
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:426:y:2003:i:6966:d:10.1038_nature02184. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.