IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v426y2003i6965d10.1038_nature02123.html
   My bibliography  Save this article

Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain

Author

Listed:
  • Andreas Lingel

    (European Molecular Biology Laboratory)

  • Bernd Simon

    (European Molecular Biology Laboratory)

  • Elisa Izaurralde

    (European Molecular Biology Laboratory)

  • Michael Sattler

    (European Molecular Biology Laboratory)

Abstract

RNA interference is a conserved mechanism that regulates gene expression in response to the presence of double-stranded (ds)RNAs1,2. The RNase III-like enzyme Dicer first cleaves dsRNA into 21–23-nucleotide small interfering RNAs (siRNAs)3,4,5,6. In the effector step, the multimeric RNA-induced silencing complex (RISC) identifies messenger RNAs homologous to the siRNAs and promotes their degradation3,7. The Argonaute 2 protein (Ago2) is a critical component of RISC8,9. Both Argonaute and Dicer family proteins contain a common PAZ domain whose function is unknown10. Here we present the three-dimensional nuclear magnetic resonance structure of the Drosophila melanogaster Ago2 PAZ domain. This domain adopts a nucleic-acid-binding fold that is stabilized by conserved hydrophobic residues. The nucleic-acid-binding patch is located in a cleft between the surface of a central β-barrel and a conserved module comprising strands β3, β4 and helix α3. Because critical structural residues and the binding surface are conserved, we suggest that PAZ domains in all members of the Argonaute and Dicer families adopt a similar fold with nucleic-acid binding function, and that this plays an important part in gene silencing.

Suggested Citation

  • Andreas Lingel & Bernd Simon & Elisa Izaurralde & Michael Sattler, 2003. "Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain," Nature, Nature, vol. 426(6965), pages 465-469, November.
  • Handle: RePEc:nat:nature:v:426:y:2003:i:6965:d:10.1038_nature02123
    DOI: 10.1038/nature02123
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02123
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangkai Zhen & Xiaolong Xu & Le Ye & Song Xie & Zhijie Huang & Sheng Yang & Yanhui Wang & Jinyu Li & Feng Long & Songying Ouyang, 2024. "Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:426:y:2003:i:6965:d:10.1038_nature02123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.