IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v425y2003i6960d10.1038_nature02049.html
   My bibliography  Save this article

Cenozoic climate change as a possible cause for the rise of the Andes

Author

Listed:
  • Simon Lamb

    (Department of Earth Sciences)

  • Paul Davis

    (University of California)

Abstract

Causal links between the rise of a large mountain range and climate have often been considered to work in one direction, with significant uplift provoking climate change. Here we propose a mechanism by which Cenozoic climate change could have caused the rise of the Andes. Based on considerations of the force balance in the South American lithosphere, we suggest that the height of, and tectonics in, the Andes are strongly controlled both by shear stresses along the plate interface in the subduction zone and by buoyancy stress contrasts between the trench and highlands, and shear stresses in the subduction zone depend on the amount of subducted sediments. We propose that the dynamics of subduction and mountain-building in this region are controlled by the processes of erosion and sediment deposition, and ultimately climate. In central South America, climate-controlled sediment starvation would then cause high shear stress, focusing the plate boundary stresses that support the high Andes.

Suggested Citation

  • Simon Lamb & Paul Davis, 2003. "Cenozoic climate change as a possible cause for the rise of the Andes," Nature, Nature, vol. 425(6960), pages 792-797, October.
  • Handle: RePEc:nat:nature:v:425:y:2003:i:6960:d:10.1038_nature02049
    DOI: 10.1038/nature02049
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02049
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhipeng Zhou & Hans Thybo & Irina M. Artemieva & Timothy Kusky & Chi-Chia Tang, 2024. "Crustal melting and continent uplift by mafic underplating at convergent boundaries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Muhammad Usman, 2016. "A study on the enhancing earthquake frequency in northern Pakistan: is the climate change responsible?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 921-931, June.
    3. Jiashun Hu & Lijun Liu & Michael Gurnis, 2021. "Southward expanding plate coupling due to variation in sediment subduction as a cause of Andean growth," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:425:y:2003:i:6960:d:10.1038_nature02049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.