Author
Listed:
- Wendy M. Loya
(Michigan Technological University)
- Kurt S. Pregitzer
(Michigan Technological University)
- Noah J. Karberg
(North Central Research Station)
- John S. King
(Michigan Technological University)
- Christian P. Giardina
(North Central Research Station)
Abstract
In the Northern Hemisphere, ozone levels in the troposphere have increased by 35 per cent over the past century1, with detrimental impacts on forest2,3 and agricultural4 productivity, even when forest productivity has been stimulated by increased carbon dioxide levels5. In addition to reducing productivity, increased tropospheric ozone levels could alter terrestrial carbon cycling by lowering the quantity and quality of carbon inputs to soils. However, the influence of elevated ozone levels on soil carbon formation and decomposition are unknown. Here we examine the effects of elevated ozone levels on the formation rates of total and decay-resistant acid-insoluble soil carbon under conditions of elevated carbon dioxide levels in experimental aspen (Populus tremuloides) stands and mixed aspen–birch (Betula papyrifera) stands. With ambient concentrations of ozone and carbon dioxide both raised by 50 per cent, we find that the formation rates of total and acid-insoluble soil carbon are reduced by 50 per cent relative to the amounts entering the soil when the forests were exposed to increased carbon dioxide alone. Our results suggest that, in a world with elevated atmospheric carbon dioxide concentrations, global-scale reductions in plant productivity due to elevated ozone levels will also lower soil carbon formation rates significantly.
Suggested Citation
Wendy M. Loya & Kurt S. Pregitzer & Noah J. Karberg & John S. King & Christian P. Giardina, 2003.
"Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels,"
Nature, Nature, vol. 425(6959), pages 705-707, October.
Handle:
RePEc:nat:nature:v:425:y:2003:i:6959:d:10.1038_nature02047
DOI: 10.1038/nature02047
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:425:y:2003:i:6959:d:10.1038_nature02047. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.