Author
Abstract
The different degrees of freedom of a given system are usually independent of each other but can in some materials be strongly coupled, giving rise to phase equilibria sensitively susceptible to external perturbations. Such systems often exhibit unusual physical properties that are difficult to treat theoretically, as exemplified by strongly correlated electron systems such as intermediate-valence rare-earth heavy fermions and Kondo insulators, colossal magnetoresistive manganites and high-transition temperature (high-Tc) copper oxide superconductors. Metal fulleride salts1—metal intercalation compounds of C60—and materials based on rare-earth metals also exhibit strong electronic correlations. Rare-earth fullerides thus constitute a particularly intriguing system—they contain highly correlated cation (rare-earth) and anion (C60) sublattices. Here we show, using high-resolution synchrotron X-ray diffraction and magnetic susceptibility measurements, that cooling the rare-earth fulleride Sm2.75C60 induces an isosymmetric phase transition near 32 K, accompanied by a dramatic isotropic volume increase and a samarium valence transition from (2 + ε) + to nearly 2 + . The negative thermal expansion—heating from 4.2 to 32 K leads to contraction rather than expansion—occurs at a rate about 40 times larger than in ternary metal oxides typically exhibiting such behaviour2. We attribute the large negative thermal expansion, unprecedented in fullerene or other molecular systems, to a quasi-continuous valence transition from Sm2+ towards the smaller Sm(2+ε)+, analogous to the valence or configuration transitions encountered in intermediate-valence Kondo insulators like SmS (ref. 3).
Suggested Citation
J. Arvanitidis & Konstantinos Papagelis & Serena Margadonna & Kosmas Prassides & Andrew N. Fitch, 2003.
"Temperature-induced valence transition and associated lattice collapse in samarium fulleride,"
Nature, Nature, vol. 425(6958), pages 599-602, October.
Handle:
RePEc:nat:nature:v:425:y:2003:i:6958:d:10.1038_nature01994
DOI: 10.1038/nature01994
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:425:y:2003:i:6958:d:10.1038_nature01994. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.