IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v425y2003i6955d10.1038_nature01977.html
   My bibliography  Save this article

Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins

Author

Listed:
  • Eric A. Gaucher

    (University of Florida)

  • J. Michael Thomson

    (University of Florida
    University of North Carolina)

  • Michelle F. Burgan

    (University of Florida)

  • Steven A. Benner

    (University of Florida
    University of Florida
    University of Florida)

Abstract

Features of the physical environment surrounding an ancestral organism can be inferred by reconstructing sequences1,2,3,4,5,6,7,8,9 of ancient proteins made by those organisms, resurrecting these proteins in the laboratory, and measuring their properties. Here, we resurrect candidate sequences for elongation factors of the Tu family (EF-Tu) found at ancient nodes in the bacterial evolutionary tree, and measure their activities as a function of temperature. The ancient EF-Tu proteins have temperature optima of 55–65 °C. This value seems to be robust with respect to uncertainties in the ancestral reconstruction. This suggests that the ancient bacteria that hosted these particular genes were thermophiles, and neither hyperthermophiles nor mesophiles. This conclusion can be compared and contrasted with inferences drawn from an analysis of the lengths of branches in trees joining proteins from contemporary bacteria10, the distribution of thermophily in derived bacterial lineages11, the inferred G + C content of ancient ribosomal RNA12, and the geological record combined with assumptions concerning molecular clocks13. The study illustrates the use of experimental palaeobiochemistry and assumptions about deep phylogenetic relationships between bacteria to explore the character of ancient life.

Suggested Citation

  • Eric A. Gaucher & J. Michael Thomson & Michelle F. Burgan & Steven A. Benner, 2003. "Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins," Nature, Nature, vol. 425(6955), pages 285-288, September.
  • Handle: RePEc:nat:nature:v:425:y:2003:i:6955:d:10.1038_nature01977
    DOI: 10.1038/nature01977
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01977
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongyi Lu & Runyue Xia & Siyu Zhang & Jie Pan & Yang Liu & Yuri I. Wolf & Eugene V. Koonin & Meng Li, 2024. "Evolution of optimal growth temperature in Asgard archaea inferred from the temperature dependence of GDP binding to EF-1A," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Paul D Williams & David D Pollock & Benjamin P Blackburne & Richard A Goldstein, 2006. "Assessing the Accuracy of Ancestral Protein Reconstruction Methods," PLOS Computational Biology, Public Library of Science, vol. 2(6), pages 1-8, June.
    3. Bin Ma & Louxin Zhang, 2011. "Efficient estimation of the accuracy of the maximum likelihood method for ancestral state reconstruction," Journal of Combinatorial Optimization, Springer, vol. 21(4), pages 409-422, May.
    4. Robert K Bradley & Ian Holmes, 2009. "Evolutionary Triplet Models of Structured RNA," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:425:y:2003:i:6955:d:10.1038_nature01977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.