IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v425y2003i6953d10.1038_nature01921.html
   My bibliography  Save this article

Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α

Author

Listed:
  • Jin Fu

    (University of California)

  • Silvana Gaetani

    (University of California)

  • Fariba Oveisi

    (University of California)

  • Jesse Lo Verme

    (University of California)

  • Antonia Serrano

    (Fundación Hospital Carlos Haya)

  • Fernando Rodríguez de Fonseca

    (Fundación Hospital Carlos Haya)

  • Anja Rosengarth

    (University of California)

  • Hartmut Luecke

    (University of California)

  • Barbara Di Giacomo

    (University of Urbino)

  • Giorgio Tarzia

    (University of Urbino)

  • Daniele Piomelli

    (University of California)

Abstract

Oleylethanolamide (OEA) is a naturally occurring lipid that regulates satiety and body weight1,2. Although structurally related to the endogenous cannabinoid anandamide, OEA does not bind to cannabinoid receptors and its molecular targets have not been defined. Here we show that OEA binds with high affinity to the peroxisome-proliferator-activated receptor-α (PPAR-α), a nuclear receptor that regulates several aspects of lipid metabolism. Administration of OEA produces satiety and reduces body weight gain in wild-type mice, but not in mice deficient in PPAR-α. Two distinct PPAR-α agonists have similar effects that are also contingent on PPAR-α expression, whereas potent and selective agonists for PPAR-γ and PPAR-β/δ are ineffective. In the small intestine of wild-type but not PPAR-α-null mice, OEA regulates the expression of several PPAR-α target genes: it initiates the transcription of proteins involved in lipid metabolism and represses inducible nitric oxide synthase, an enzyme that may contribute to feeding stimulation. Our results, which show that OEA induces satiety by activating PPAR-α, identify an unexpected role for this nuclear receptor in regulating behaviour, and raise possibilities for the treatment of eating disorders.

Suggested Citation

  • Jin Fu & Silvana Gaetani & Fariba Oveisi & Jesse Lo Verme & Antonia Serrano & Fernando Rodríguez de Fonseca & Anja Rosengarth & Hartmut Luecke & Barbara Di Giacomo & Giorgio Tarzia & Daniele Piomelli, 2003. "Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α," Nature, Nature, vol. 425(6953), pages 90-93, September.
  • Handle: RePEc:nat:nature:v:425:y:2003:i:6953:d:10.1038_nature01921
    DOI: 10.1038/nature01921
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01921
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yannick Fotio & Alex Mabou Tagne & Erica Squire & Hye-lim Lee & Connor M. Phillips & Kayla Chang & Faizy Ahmed & Andrew S. Greenberg & S. Armando Villalta & Vanessa M. Scarfone & Gilberto Spadoni & Ma, 2024. "NAAA-regulated lipid signaling in monocytes controls the induction of hyperalgesic priming in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Xiaotong Diao & Fei Ye & Meina Zhang & Xintong Ren & Xiaoxu Tian & Jingping Lu & Xiangnan Sun & Zeng Hou & Xiaoyu Chen & Fengwei Li & Jingjing Zhuang & Hong Ding & Chao Peng & Fraydoon Rastinejad & Ch, 2022. "Identification of oleoylethanolamide as an endogenous ligand for HIF-3α," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Ozren Stojanović & Jordi Altirriba & Dorothée Rigo & Martina Spiljar & Emilien Evrard & Benedek Roska & Salvatore Fabbiano & Nicola Zamboni & Pierre Maechler & Françoise Rohner-Jeanrenaud & Mirko Traj, 2021. "Dietary excess regulates absorption and surface of gut epithelium through intestinal PPARα," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Bennett W. Fox & Maximilian J. Helf & Russell N. Burkhardt & Alexander B. Artyukhin & Brian J. Curtis & Diana Fajardo Palomino & Allen F. Schroeder & Amaresh Chaturbedi & Arnaud Tauffenberger & Cheste, 2024. "Evolutionarily related host and microbial pathways regulate fat desaturation in C. elegans," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:425:y:2003:i:6953:d:10.1038_nature01921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.