IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v424y2003i6952d10.1038_nature01845.html
   My bibliography  Save this article

Water-driven structure transformation in nanoparticles at room temperature

Author

Listed:
  • Hengzhong Zhang

    (University of California)

  • Benjamin Gilbert

    (University of California)

  • Feng Huang

    (University of California)

  • Jillian F. Banfield

    (University of California)

Abstract

The thermodynamic behaviour of small particles differs from that of the bulk material by the free energy term γA—the product of the surface (or interfacial) free energy and the surface (or interfacial) area. When the surfaces of polymorphs of the same material possess different interfacial free energies, a change in phase stability can occur with decreasing particle size1,2. Here we describe a nanoparticle system that undergoes structural changes in response to changes in the surface environment rather than particle size. ZnS nanoparticles (average diameter 3 nm) were synthesized in methanol and found to exhibit a reversible structural transformation accompanying methanol desorption, indicating that the particles readily adopt minimum energy structural configurations3,4. The binding of water to the as-formed particles at room temperature leads to a dramatic structural modification, significantly reducing distortions of the surface and interior to generate a structure close to that of sphalerite (tetrahedrally coordinated cubic ZnS). These findings suggest a route for post-synthesis control of nanoparticle structure and the potential use of the nanoparticle structural state as an environmental sensor. Furthermore, the results imply that the structure and reactivity of nanoparticles at planetary surfaces, in interplanetary dust5 and in the biosphere6,7, will depend on both particle size and the nature of the surrounding molecules.

Suggested Citation

  • Hengzhong Zhang & Benjamin Gilbert & Feng Huang & Jillian F. Banfield, 2003. "Water-driven structure transformation in nanoparticles at room temperature," Nature, Nature, vol. 424(6952), pages 1025-1029, August.
  • Handle: RePEc:nat:nature:v:424:y:2003:i:6952:d:10.1038_nature01845
    DOI: 10.1038/nature01845
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01845
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaghoubi, Sina & Mousavi, Seyyed Mojtaba & Babapoor, Aziz & Binazadeh, Mojtaba & Lai, Chin Wei & Althomali, Raed H. & Rahman, Mohammed M. & Chiang, Wei-Hung, 2024. "Photocatalysts for solar energy conversion: Recent advances and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6952:d:10.1038_nature01845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.