IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v424y2003i6950d10.1038_nature01879.html
   My bibliography  Save this article

Intense equatorial flux spots on the surface of the Earth's core

Author

Listed:
  • Andrew Jackson

    (University of Leeds)

Abstract

A large number of high-accuracy vector measurements of the Earth's magnetic field have recently become available from the satellite Oersted, complementing previous vector data from the satellite Magsat, which operated in 1979/80. These data can be used to infer the morphology of the magnetic field at the surface of the fluid core1, ∼2,900 km below the Earth's surface. Here I apply a new methodology to these data to calculate maps of the magnetic field at the core surface which show intense flux spots in equatorial regions. The intensity of these features is unusually large—some have intensities comparable to high-latitude flux patches near the poles, previously identified as the major component of the dynamo field2. The tendency for pairing of some of these spots to the north and south of the geographical equator suggests they might be associated with the tops of equatorially symmetric columnar structures in the fluid, or their antisymmetric equivalents. The drift of the equatorial features may represent material flow or could represent wave motion; discrimination of these two effects based on future data could provide new information on the strength of the hidden toroidal magnetic field of the Earth.

Suggested Citation

  • Andrew Jackson, 2003. "Intense equatorial flux spots on the surface of the Earth's core," Nature, Nature, vol. 424(6950), pages 760-763, August.
  • Handle: RePEc:nat:nature:v:424:y:2003:i:6950:d:10.1038_nature01879
    DOI: 10.1038/nature01879
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01879
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6950:d:10.1038_nature01879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.