IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v424y2003i6948d10.1038_nature01804.html
   My bibliography  Save this article

Processivity of the single-headed kinesin KIF1A through biased binding to tubulin

Author

Listed:
  • Yasushi Okada

    (University of Tokyo, Graduate School of Medicine)

  • Hideo Higuchi

    (Tohoku University)

  • Nobutaka Hirokawa

    (University of Tokyo, Graduate School of Medicine)

Abstract

Conventional isoforms of the motor protein kinesin behave functionally not as ‘single molecules’ but as ‘two molecules’ paired. This dimeric structure poses a barrier to solving its mechanism1,2,3,4. To overcome this problem, we used an unconventional kinesin KIF1A (refs 5, 6) as a model molecule. KIF1A moves processively as an independent monomer7,8, and can also work synergistically as a functional dimer9. Here we show, by measuring its movement with an optical trapping system10, that a single ATP hydrolysis triggers a single stepping movement of a single KIF1A monomer. The step size is distributed stochastically around multiples of 8 nm with a gaussian-like envelope and a standard deviation of 15 nm. On average, the step is directional to the microtubule's plus-end against a load force of up to 0.15 pN. As the source for this directional movement, we show that KIF1A moves to the microtubule's plus-end by ∼3 nm on average on binding to the microtubule, presumably by preferential binding to tubulin on the plus-end side. We propose a simple physical formulation to explain the movement of KIF1A.

Suggested Citation

  • Yasushi Okada & Hideo Higuchi & Nobutaka Hirokawa, 2003. "Processivity of the single-headed kinesin KIF1A through biased binding to tubulin," Nature, Nature, vol. 424(6948), pages 574-577, July.
  • Handle: RePEc:nat:nature:v:424:y:2003:i:6948:d:10.1038_nature01804
    DOI: 10.1038/nature01804
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01804
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu P. M. H. Benoit & Lu Rao & Ana B. Asenjo & Arne Gennerich & Hernando Sosa, 2024. "Cryo-EM unveils kinesin KIF1A’s processivity mechanism and the impact of its pathogenic variant P305L," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6948:d:10.1038_nature01804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.