Author
Listed:
- Luc Jasmin
(University of California, San Francisco
University of California, San Francisco)
- Samuel D. Rabkin
(Massachusetts General Hospital, Harvard Medical School)
- Alberto Granato
(Catholic University)
- Abdennacer Boudah
(University of California, San Francisco)
- Peter T. Ohara
(University of California, San Francisco)
Abstract
It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex1, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter γ-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold—producing analgesia or hyperalgesia, respectively—in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABAB-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.
Suggested Citation
Luc Jasmin & Samuel D. Rabkin & Alberto Granato & Abdennacer Boudah & Peter T. Ohara, 2003.
"Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex,"
Nature, Nature, vol. 424(6946), pages 316-320, July.
Handle:
RePEc:nat:nature:v:424:y:2003:i:6946:d:10.1038_nature01808
DOI: 10.1038/nature01808
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6946:d:10.1038_nature01808. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.