IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v424y2003i6945d10.1038_nature01771.html
   My bibliography  Save this article

Dosage sensitivity and the evolution of gene families in yeast

Author

Listed:
  • Balázs Papp

    (University of Bath
    Department of Plant Taxonomy and Ecology, Eötvös Loránd University)

  • Csaba Pál

    (University of Bath
    Department of Plant Taxonomy and Ecology, Eötvös Loránd University)

  • Laurence D. Hurst

    (University of Bath)

Abstract

According to what we term the balance hypothesis, an imbalance in the concentration of the subcomponents of a protein–protein complex can be deleterious1. If so, there are two consequences: first, both underexpression and overexpression of protein complex subunits should lower fitness, and second, the accuracy of transcriptional co-regulation of subunits should reflect the deleterious consequences of imbalance. Here we show that all these predictions are upheld in yeast (Saccharomyces cerevisiae). This supports the hypothesis2,3 that dominance is a by-product of physiology and metabolism rather than the result of selection to mask the deleterious effects of mutations. Beyond this, single-gene duplication of protein subunits is expected to be harmful, as this, too, leads to imbalance. As then expected, we find that members of large gene families are rarely involved in complexes. The balance hypothesis therefore provides a single theoretical framework for understanding components both of dominance and of gene family size.

Suggested Citation

  • Balázs Papp & Csaba Pál & Laurence D. Hurst, 2003. "Dosage sensitivity and the evolution of gene families in yeast," Nature, Nature, vol. 424(6945), pages 194-197, July.
  • Handle: RePEc:nat:nature:v:424:y:2003:i:6945:d:10.1038_nature01771
    DOI: 10.1038/nature01771
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01771
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fridtjof Brauns & Leila Iñigo de la Cruz & Werner K.-G. Daalman & Ilse Bruin & Jacob Halatek & Liedewij Laan & Erwin Frey, 2023. "Redundancy and the role of protein copy numbers in the cell polarization machinery of budding yeast," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Shinsuke Ohnuki & Yoshikazu Ohya, 2018. "High-dimensional single-cell phenotyping reveals extensive haploinsufficiency," PLOS Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    3. Xiaowen Shi & Hua Yang & Chen Chen & Jie Hou & Tieming Ji & Jianlin Cheng & James A. Birchler, 2022. "Dosage-sensitive miRNAs trigger modulation of gene expression during genomic imbalance in maize," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Thuy N. Nguyen & Christine Ingle & Samuel Thompson & Kimberly A. Reynolds, 2024. "The genetic landscape of a metabolic interaction," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6945:d:10.1038_nature01771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.