IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v424y2003i6944d10.1038_nature01760.html
   My bibliography  Save this article

Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation

Author

Listed:
  • Phuong Pham

    (University of Southern California)

  • Ronda Bransteitter

    (University of Southern California)

  • John Petruska

    (University of Southern California)

  • Myron F. Goodman

    (University of Southern California)

Abstract

Activation-induced cytidine deaminase (AID) is a protein required for B cells to undergo class switch recombination and somatic hypermutation (SHM)—two processes essential for producing high-affinity antibodies1. Purified AID catalyses the deamination of C to U on single-stranded (ss)DNA2,3,4. Here, we show in vitro that AID-catalysed C deaminations occur preferentially on 5′ WRC sequences in accord with SHM spectra observed in vivo. Although about 98% of DNA clones suffer no mutations, most of the remaining mutated clones have 10–70 C to T transitions per clone. Therefore, AID carries out multiple C deaminations on individual DNA strands, rather than jumping from one strand to another. The avid binding of AID to ssDNA could result from its large net positive charge (+11) at pH 7.0, owing to a basic amino-terminal domain enriched in arginine and lysine. Furthermore, AID exhibits a 15-fold preference for C deamination on the non-transcribed DNA strand exposed by RNA polymerase than the transcribed strand protected as a RNA–DNA hybrid. These deamination results on ssDNA bear relevance to three characteristic features of SHM: preferential mutation at C sites within WRC hotspot sequences, the broad clonal mutagenic heterogeneity of antibody variable regions targeted for mutation5,6, and the requirement for active transcription to obtain mutagenesis7,8.

Suggested Citation

  • Phuong Pham & Ronda Bransteitter & John Petruska & Myron F. Goodman, 2003. "Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation," Nature, Nature, vol. 424(6944), pages 103-107, July.
  • Handle: RePEc:nat:nature:v:424:y:2003:i:6944:d:10.1038_nature01760
    DOI: 10.1038/nature01760
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01760
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01760?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sriram Vijayraghavan & Thomas Blouin & James McCollum & Latarsha Porcher & François Virard & Jiri Zavadil & Carol Feghali-Bostwick & Natalie Saini, 2024. "Widespread mutagenesis and chromosomal instability shape somatic genomes in systemic sclerosis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6944:d:10.1038_nature01760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.