IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v423y2003i6940d10.1038_nature01671.html
   My bibliography  Save this article

Scaling metabolism from organisms to ecosystems

Author

Listed:
  • Brian J. Enquist

    (University of Arizona
    Center for Applied Biodiversity Science)

  • Evan P. Economo

    (University of Arizona)

  • Travis E. Huxman

    (University of Arizona)

  • Andrew P. Allen

    (University of New Mexico)

  • Danielle D. Ignace

    (University of Arizona)

  • James F. Gillooly

    (University of New Mexico)

Abstract

Understanding energy and material fluxes through ecosystems is central to many questions in global change biology and ecology1,2,3,4,5,6,7,8,9,10,11. Ecosystem respiration is a critical component of the carbon cycle1,5,6,7 and might be important in regulating biosphere response to global climate change1,2,3. Here we derive a general model of ecosystem respiration based on the kinetics of metabolic reactions11,12,13 and the scaling of resource use by individual organisms14,15. The model predicts that fluxes of CO2 and energy are invariant of ecosystem biomass, but are strongly influenced by temperature, variation in cellular metabolism and rates of supply of limiting resources (water and/or nutrients). Variation in ecosystem respiration within sites, as calculated from a network of CO2 flux towers5,7, provides robust support for the model's predictions. However, data indicate that variation in annual flux between sites is not strongly dependent on average site temperature or latitude. This presents an interesting paradox with regard to the expected temperature dependence. Nevertheless, our model provides a basis for quantitatively understanding energy and material flux between the atmosphere and biosphere.

Suggested Citation

  • Brian J. Enquist & Evan P. Economo & Travis E. Huxman & Andrew P. Allen & Danielle D. Ignace & James F. Gillooly, 2003. "Scaling metabolism from organisms to ecosystems," Nature, Nature, vol. 423(6940), pages 639-642, June.
  • Handle: RePEc:nat:nature:v:423:y:2003:i:6940:d:10.1038_nature01671
    DOI: 10.1038/nature01671
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01671
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James H Larson & Jon M Vallazza & Brent C Knights, 2019. "Estimating the degree to which distance and temperature differences drive changes in fish community composition over time in the upper Mississippi River," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-13, December.
    2. Rebecca L. Kordas & Samraat Pawar & Dimitrios-Georgios Kontopoulos & Guy Woodward & Eoin J. O’Gorman, 2022. "Metabolic plasticity can amplify ecosystem responses to global warming," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Harris, Lora A. & Brush, Mark J., 2012. "Bridging the gap between empirical and mechanistic models of aquatic primary production with the metabolic theory of ecology: An example from estuarine ecosystems," Ecological Modelling, Elsevier, vol. 233(C), pages 83-89.
    4. Christian Hilbe & Maria Kleshnina & Kateřina Staňková, 2023. "Evolutionary Games and Applications: Fifty Years of ‘The Logic of Animal Conflict’," Dynamic Games and Applications, Springer, vol. 13(4), pages 1035-1048, December.
    5. Song, Dong-Ming & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2009. "Statistical properties of world investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2450-2460.
    6. Seppelt, Ralf & Müller, Felix & Schröder, Boris & Volk, Martin, 2009. "Challenges of simulating complex environmental systems at the landscape scale: A controversial dialogue between two cups of espresso," Ecological Modelling, Elsevier, vol. 220(24), pages 3481-3489.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:423:y:2003:i:6940:d:10.1038_nature01671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.