IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v423y2003i6940d10.1038_nature01651.html
   My bibliography  Save this article

Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin

Author

Listed:
  • Yanan Shen

    (Harvard University)

  • Andrew H. Knoll

    (Harvard University)

  • Malcolm R. Walter

    (Macquarie University)

Abstract

Many independent lines of evidence document a large increase in the Earth's surface oxidation state 2,400 to 2,200 million years ago1,2,3,4, and a second biospheric oxygenation 800 to 580 million years ago, just before large animals appear in the fossil record5,6. Such a two-staged oxidation implies a unique ocean chemistry for much of the Proterozoic eon, which would have been neither completely anoxic and iron-rich as hypothesized for Archaean seas, nor fully oxic as supposed for most of the Phanerozoic eon7. The redox chemistry of Proterozoic oceans has important implications for evolution8, but empirical constraints on competing environmental models are scarce. Here we present an analysis of the iron chemistry of shales deposited in the marine Roper Basin, Australia, between about 1,500 and 1,400 million years ago, which record deep-water anoxia beneath oxidized surface water. The sulphur isotopic compositions of pyrites in the shales show strong variations along a palaeodepth gradient, indicating low sulphate concentrations in mid-Proterozoic oceans. Our data help to integrate a growing body of evidence favouring a long-lived intermediate state of the oceans, generated by the early Proterozoic oxygen revolution and terminated by the environmental transformation late in the Proterozoic eon.

Suggested Citation

  • Yanan Shen & Andrew H. Knoll & Malcolm R. Walter, 2003. "Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin," Nature, Nature, vol. 423(6940), pages 632-635, June.
  • Handle: RePEc:nat:nature:v:423:y:2003:i:6940:d:10.1038_nature01651
    DOI: 10.1038/nature01651
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01651
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guohui Ding & Jiuhong Kang & Qi Liu & Tieliu Shi & Gang Pei & Yixue Li, 2006. "Insights into the Coupling of Duplication Events and Macroevolution from an Age Profile of Animal Transmembrane Gene Families," PLOS Computational Biology, Public Library of Science, vol. 2(8), pages 1-7, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:423:y:2003:i:6940:d:10.1038_nature01651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.