IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v423y2003i6935d10.1038_nature01588.html
   My bibliography  Save this article

Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana

Author

Listed:
  • D. Tian

    (University of Chicago)

  • M. B. Traw

    (University of Chicago)

  • J. Q. Chen

    (Nanjing University)

  • M. Kreitman

    (University of Chicago)

  • J. Bergelson

    (University of Chicago)

Abstract

Resistance genes (R-genes) act as an immune system in plants by recognizing pathogens and inducing defensive pathways. Many R-gene loci are present in plant genomes, presumably reflecting the need to maintain a large repertoire of resistance alleles. These loci also often segregate for resistance and susceptibility alleles that natural selection has maintained as polymorphisms within a species for millions of years1,2,3,4,5. Given the obvious advantage to an individual of being disease resistant, what prevents these resistance alleles from being driven to fixation by natural selection? A cost of resistance6 is one potential explanation; most models require a lower fitness of resistant individuals in the absence of pathogens for long-term persistence of susceptibility alleles7. Here we test for the presence of a cost of resistance at the RPM1 locus of Arabidopsis thaliana. Results of a field experiment comparing the fitness of isogenic strains that differ in the presence or absence of RPM1 and its natural promoter reveal a large cost of RPM1, providing the first evidence that costs contribute to the maintenance of an ancient R-gene polymorphism.

Suggested Citation

  • D. Tian & M. B. Traw & J. Q. Chen & M. Kreitman & J. Bergelson, 2003. "Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana," Nature, Nature, vol. 423(6935), pages 74-77, May.
  • Handle: RePEc:nat:nature:v:423:y:2003:i:6935:d:10.1038_nature01588
    DOI: 10.1038/nature01588
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01588
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen Huang & Chunli Wang & Zixuan Ding & Yaqian Zhao & Jing Dai & Jia Li & Haining Huang & Tongkai Wang & Min Zhu & Mingfeng Feng & Yinghua Ji & Zhongkai Zhang & Xiaorong Tao, 2024. "A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Joo Hyun Im & Brian P Lazzaro, 2018. "Population genetic analysis of autophagy and phagocytosis genes in Drosophila melanogaster and D. simulans," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-17, October.
    3. Andy Fenton & Michael A Brockhurst, 2007. "Epistatic Interactions Alter Dynamics of Multilocus Gene-for-Gene Coevolution," PLOS ONE, Public Library of Science, vol. 2(11), pages 1-6, November.
    4. Aleksandra Noweiska & Roksana Bobrowska & MichaƂ Tomasz Kwiatek, 2022. "Structural Polymorphisms of Chromosome 3A m Containing Lr63 Leaf Rust Resistance Loci Reflect the Geographical Distribution of Triticum monococcum L. and Related Diploid Wheats," Agriculture, MDPI, vol. 12(7), pages 1-11, July.
    5. DeAngelis, Donald L. & Koslow, Jennifer M. & Jiang, Jiang & Ruan, Shigui, 2008. "Host mating system and the spread of a disease-resistant allele in a population," Theoretical Population Biology, Elsevier, vol. 74(2), pages 191-198.
    6. Yuying Li & Qiong Wang & Huimin Jia & Kazuya Ishikawa & Ken-ichi Kosami & Takahiro Ueba & Atsumi Tsujimoto & Miki Yamanaka & Yasuyuki Yabumoto & Daisuke Miki & Eriko Sasaki & Yoichiro Fukao & Masayuki, 2024. "An NLR paralog Pit2 generated from tandem duplication of Pit1 fine-tunes Pit1 localization and function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:423:y:2003:i:6935:d:10.1038_nature01588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.