IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v423y2003i6935d10.1038_nature01581.html
   My bibliography  Save this article

The principle of gating charge movement in a voltage-dependent K+ channel

Author

Listed:
  • Youxing Jiang

    (Rockefeller University
    University of Texas Southwestern Medical Center)

  • Vanessa Ruta

    (Rockefeller University)

  • Jiayun Chen

    (Rockefeller University)

  • Alice Lee

    (Rockefeller University)

  • Roderick MacKinnon

    (Rockefeller University)

Abstract

The steep dependence of channel opening on membrane voltage allows voltage-dependent K+ channels to turn on almost like a switch. Opening is driven by the movement of gating charges that originate from arginine residues on helical S4 segments of the protein. Each S4 segment forms half of a ‘voltage-sensor paddle’ on the channel's outer perimeter. Here we show that the voltage-sensor paddles are positioned inside the membrane, near the intracellular surface, when the channel is closed, and that the paddles move a large distance across the membrane from inside to outside when the channel opens. KvAP channels were reconstituted into planar lipid membranes and studied using monoclonal Fab fragments, a voltage-sensor toxin, and avidin binding to tethered biotin. Our findings lead us to conclude that the voltage-sensor paddles operate somewhat like hydrophobic cations attached to levers, enabling the membrane electric field to open and close the pore.

Suggested Citation

  • Youxing Jiang & Vanessa Ruta & Jiayun Chen & Alice Lee & Roderick MacKinnon, 2003. "The principle of gating charge movement in a voltage-dependent K+ channel," Nature, Nature, vol. 423(6935), pages 42-48, May.
  • Handle: RePEc:nat:nature:v:423:y:2003:i:6935:d:10.1038_nature01581
    DOI: 10.1038/nature01581
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01581
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ozer, Mahmut, 2005. "Determination of rate kinetics in ion channels by the path probability method and Onsager reciprocity theorem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 357(3), pages 397-414.
    2. Alan J Situ & Tobias S Ulmer, 2019. "Universal principles of membrane protein assembly, composition and evolution," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:423:y:2003:i:6935:d:10.1038_nature01581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.