Author
Listed:
- Yuancheng Gung
(Berkeley Seismological Laboratory and Department of Earth and Planetary Science)
- Mark Panning
(Berkeley Seismological Laboratory and Department of Earth and Planetary Science)
- Barbara Romanowicz
(Berkeley Seismological Laboratory and Department of Earth and Planetary Science)
Abstract
For decades there has been a vigorous debate about the depth extent of continental roots1,2. The analysis of heat-flow3, mantle-xenolith4 and electrical-conductivity5 data all indicate that the coherent, conductive part of continental roots (the ‘tectosphere’) is at most 200–250 km thick. Some global seismic tomographic models agree with this estimate, but others suggest that a much thicker zone of high velocities lies beneath continental shields6,7,8,9, reaching a depth of at least 400 km. Here we show that this disagreement can be reconciled by taking into account seismic anisotropy. We show that significant radial anisotropy, with horizontally polarized shear waves travelling faster than those that are vertically polarized, is present under most cratons in the depth range 250–400 km—similar to that found under ocean basins9,10 at shallower depths of 80–250 km. We propose that, in both cases, the anisotropy is related to shear in a low-viscosity asthenospheric channel, located at different depths under continents and oceans. The seismically defined ‘tectosphere’ is then at most 200–250 km thick under old continents. The ‘Lehmann discontinuity’, observed mostly under continents at about 200–250 km, and the ‘Gutenberg discontinuity’, observed under oceans at depths of about 60–80 km, may both be associated with the bottom of the lithosphere, marking a transition to flow-induced asthenospheric anisotropy.
Suggested Citation
Yuancheng Gung & Mark Panning & Barbara Romanowicz, 2003.
"Global anisotropy and the thickness of continents,"
Nature, Nature, vol. 422(6933), pages 707-711, April.
Handle:
RePEc:nat:nature:v:422:y:2003:i:6933:d:10.1038_nature01559
DOI: 10.1038/nature01559
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:422:y:2003:i:6933:d:10.1038_nature01559. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.